
MAP PROJECTIONS 



CAMBRIDGE UNIVERSITY PRESS 
Qonbon: FETTEK LANE, E.C. 

C. F. CLAY, MANAGER 

(1Fbinburob: loo, PRINCES S T R E E T  
Brtlin: A. ASHER A N D  CO. 
Zeiyti[l: F. A. I3ROCKHAUS 

@etn @or&: G. P. PUTNAM'S S O N S  
Bornbag nnb Cnlruitn: MACM ILLAN AND CO.,  LTD. 







MAP PROJECTIONS 

ARTHUR R.' HINKS, M.A. 
C H I E F  ASSISTANT, C A M B R I D G E  OBSERVATORY, A N D  

U N I V E R S I T Y  LECTtIRER I N  S U R V E Y I N G  A N D  C A R T O < ; R A P H Y  

Carn bridge : 

at the  University Press 

1912 



cdambtibge : 
PRINTED BY JOI-IN CLAY, M . A .  

AT THE UNIVERSITY PRESS. 



PREFACE 

T HE subject of Map Projections has become over complicated 
because it has interested many mathematicians. The parts 

of the subject which are of mathematical interest are embodied 
in theorems of great elegance and considerable difficulty ; in 

particular, the theory of the conformal representation of one 
surface upon another leads to developments which, from the 
mathematical standpoint, are of the highest importance, and 

possess an extensive literature. Yet we shall find that the 

property of orthomorphism, which plays such a large and difficult 

part in the theory of Map Projections, is not in most cases of 

any great advantage or importance in actual mapmaking. 

In writing a book on Map Projections, the usual course has 

been to present the general mathematical theory first, and to 

discuss the practical questions involved at a later stage. The 
result is that the geographer sometimes finds himself unable to 

follow the bearing of the mathematics, and arrives at the 

consideration of the practical side of the subject in a very 

unformed state of mind. 

I propose to adopt the principle of a very distinguished 

topographer, that in a book on Map Projections intended for the 

mapmaker and the map user, "one should draw the line at the 

root of minus one." If  one follows this course, one often finds 

it impossible to show how some of the more elegant projections 

may be arrived at by a deduction from general principles. 

When, however, the formula of the projection is once given, it is 
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always easy to work backwards and to demonstrate its properties. 

The amount of mathematics required in the two cases is very 

different. 

It will be seen, therefore, that this book has no pretensions to 

consideration as a treatment of the theory of projections from 

the mathematical point of view. On the contrary, its object may 

be stated very briefly as follows : There are some thirty map 
projections of importance, of which about half are in more or 

less general use. All of them have certain valuable properties, 

and equally serious defects. It  is important to have a clear 

graphical or numerical idea of the merits and defects of each ; 

to be able to decide at once on its suitability for a given map ; 
or when one finds it actually employed on a map, to recognise 

what a map so constructed will do, and what it will not do. 

I shall try in this book to make clear the relations between 
the various projections; the extent to which they possess the 

qualifications which a good map projection should possess ; the 
methods by which they can be constructed; and the way in 

which maps so constructed can be used. The last matter is of 

considerable present importance. Relatively few people have to 

make maps, but very many have to use them, and it is necessary 

to learn to guard against fatal mistakes. The introduction of 
Map Projections into the schedule of Geography for the exami- 

nation for First Class appointments in the Home and Indian 
Civil Service is a welcome recognition of this fact. In preparing 

this slight account of a large and diffuse subject I have had the 
advantage of many discussions with Colonel Close, C.M.G., R.E., 
Director-General of the Ordnance Survey, to whom I am 

indebted for my first acquaintance with its beauties. I n  making 

the calculations of the numerical properties of the various 
projections in use I have had the help of several pupils in the 

Cambridge Geography School; and in particular I have to 
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thank Mr F. M. Deighton, B.A., of Trinity College, and 

Mr T. W. Glare, B.A., of Sidney Sussex College, Cambridge, for 
the great assistance they have given me. 

I have not tried to give a set of drawings of all the projections 
treated in this book. Only very small scale diagrams would 

have been possible, and these cannot do justice to the projections 
that are most suitable for topographical and for Atlas maps. In 

their useful central regions these are very similar to one another 
until they are measured up, and the eye can hardly distinguish 

between them ; when they are constructed as world-maps, for 

which most of them are entirely unsuitable, they become easily 
distinguishable and at the same time absurd. Thus, to represent 

the whole sphere upon a conical or polyconic projection is to 

obscure the real merits and the proper uses of the projection. 

I have therefore been content to give references to the places 

where these projections may be seen in actual use and studied 

on an adequate scale ; and have confined myself here to plates 

of the two or three projections that make good small scale 
diagrams of the sphere; and to a few explanatory figures. 
The transverse Mollweide's projection is a new and interesting 

world-map; I have to thank its inventor, Colonel Close, for 

permission to include it as the frontispiece of this book. The 
 late was printed in  the Geographical Section of the General 
Staff, by kind permission of Colonel Hedley, R.E. 
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CHAPTER I 

INTRODUCTION 

WE have upon the nearly spherical surface of our globe an 
arrangement of features whose relative positions, sizes, and 
shapes we desire to represent as well as possible upon a flat 
sheet, the map. A perfect representation is impossible, since a 
plane surface cannot be fitted to a spherical. But there are 
many different ways of obtaining an approximate representation, 
whose theory and properties constitute the subject of Map 
Projections. 

Definition of a projection. 

The positions of points upon the Earth are for convenience 
defined by reference to the meridians of longitude and parallels 
of latitude. Hence if we can find a way of representing the 
parallels and meridians upon our sheet, we can lay down the 
points in their positions relative to these lines, and make our 
map. Any such representation of meridians and parallels upon 
a plane is a map projection. 

I t  is evident, from our definition, that we use the word 
Projection in a sense much wider than that which geometry 
gives it. The majority of map projections are not projections 
at all in the geometrical sense, and various attempts have been 
made to find a better word to describe the network of meridians 
and parallels. But no one has been successful. Map "con- 
struction" implies rather too much. The excellent word 
" graticule" has scarcely established itself, though it is perhaps 
less open to objection than any other. We shall, then, continue 
to use the word projection, with the warning that it is not to 
hc interpreted as meaning a geometrical projection. Strictly 

H. M. P. I 
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geometrical projections are of very little use in map making, 
and it is a mistake to hegin by considering the few that are 
used, and to proceed afterwards to the very many useful 
projections which are not derived from the sphere by any 
perspective construction. 

The number of possible ways of constructing a projection is 
infinite, even if we restrict our definition to the statement that 
any order& construction of meridians and parallels may be 
considered a projection. I t  is obvious, however, that all these 
constructions are not equally good ; and to test the merits and 
defects of a projection we must consider what properties it 
should possess in order to be useful. 

We shall find that map projections are to be judged by the 
following criteria : 

( I )  the accuracy with which they represent the scale along 
the meridians and parallels. 

(2) the accuracy with which they represent areas. 
(3) the accuracy with which they represent the shape of 

the features of the map. 
(4) the ease with which they can be constructed. 

We will consider these criteria in order. 

T h e  representation of scale. 

The scale of a map in a given direction at any point is the 
ratio which a short distance measured on the map bears to the 
corresponding distance upon the surface of the Earth. 

We must limit our definition to short distances because the 
scale of a map will generally vary from point to point; hence in  
defining scale we must confine ourselves to small elements of 
distance in the way which is familiar to every beginner in the 
differential calculus. 

We must also be careful to see that we are comparing 
distances in directions which really correspond, the one to the 
other, upon the Earth and upon the  map. The meridians and 
parallels all over the Earth cut one another at right angles. But 
there are many map projections in which they do not cut one 
another at right angles, and in consequence two directions at 
right angles upon the Earth do not necessarily correspond to 



two directions a t  right angles upon the map. We shall avoid 
confusion if we confine ourselves as much as possible to the 
consideration of scale along the meridians and the parallels of 
the map, which necessarily correspond to the meridians and 
parallels of the Earth. 

I t  would of course be desirable that the scale of the map 
should be correct in every direction a t  every point. If it were, 
the plane map would be a perfect representation of the spherical 
surface, and could therefore be fitted to it. But this is impossible. 
Hence the scale of a map cannot be correct all over the map. 

We can, however, choose a projection in which the scale in 
a certain direction, say along the meridian, or along the parallel, 
is correct at  every point of the map. But in this case the scale 
in any other direction will be wrong at most points. And one 
of our objects will be to keep this necessary error as small 
as possible. 

T h e  representation of areas. 

For some purposes, especially political and statistical, it is 
important that areas should be represented in their correct 
proportions. A projection which does this is called an equal 
area projection, or an equivalent projection. We shall use the 
former name in this book. 

Fig. r .  

Suppose that A B ,  A C  are two short distances at right angles 
to one another at any point on the Earth. If the corresponding 
distances nb, ac upon the map were always in the same proportion 
and also at right angles to one another, the projection would 
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clearly be an equal area projection. But these conditions cannot 
be fulfilled, for if they were fulfilled a t  every point, the map 
would be a perfect map, which is impossible. 

There are however two distinct ways in which the equality 
of areas may be preserved upon the map. 

( a )  ab, ac may still be at right angles, but with the scale 
of one increased and of the other decreased, in inverse pro- 
portion. 

(p) or ab, ac may be no longer a t  right angles; but while 
the scale of ac is maintained correct, that of ab is increased in 
such a proportion that the perpendicular distance of b from nc is 
correct. 

I t  is clear that in either case the projection is equal area. 

The representation of shape. 

The representation of shape as nearly correctly as possible 
is perhaps the most important function of a map. I t  is 
evidently not possible to represent the shape of a large country 
correctly upon a map, for if it were, the map would be perfect, 
which is impossible. 

But if a t  any point the scale along the meridian and the 
parallel is the same (not correct, but the same in the two 
directions) and the parallels and meridians of the map are at 
right angles to one another, then the shape of any very small 
area on the map is the same as the shape of the corresponding 
small area upon the Earth. The projection is then called 
orthomor~hic (right shape). 

But it is important to notice the restriction to very snznll 
areas. Since the scale necessarily varies from point to point, 
big areas are not correctly represented. Hence it is clear that 
the term orthomorphic must be used in a carefully limited 
sense. I t  has, in fact, a mathematical significance and interest 
which is apt to be of little use in practice. 

For example, suppose we had a strip of country a mile wide, 
along a meridian, and divided into two equal parts by parallels 
of latitude (Fig. 2 0). A projection which is orthomorphic in 
the mathematical sense might represent the figure thus (Fig. 2 h). 
It will be noticed that all the angles are preserved in their true 



magnitudes as right angles, but the strip on the map is no 
longer of uniform width, it is no longer divided into equal parts, 
and it is unsymmetrical. 

Another ortho~norphic projection might represent the same 
strip thus (Fig. 2 c ) :  the angles are preserved as before, the 
areas are modified so that the strip is no longer bisected; but 
there is symmetry and no general bending. 

(4 
Fig. 2 .  

I t  is clear that the latter projection may be much superior 
to the former in representing the shapes of considerable areas, 
especially for countries having a great extent in  latitude. The 
essential difference is, that in the former case the projections of 
the meridians are not straight lines, while in the latter case they 
are. 

\Ve shall find that an orthomorphic projection is generally 
not much use for map making unless the meridians are straight 
lines on the map. 

We shall also notice that projections which are not, mathe- 
matically speaking, orthomorphic may often represent the shape 
of large areas better than is done by projections that are 
orthomorphic. 

LVe shall therefore be prepared to find that the mathematical 
property of orthomorphism does not always, or indeed usually, 
give the map any considerable practical advantages ; and that 
orthomorphism may generally be sacrificed to other less 
theoretically elegant, but more useful properties. 

LVe [nay define orthomorphic projections by either of two 
properties : 
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(a) At any point the scale in all directions is the same. 
(This is the definition used above.) 

Or (p )  The angles in any small figure on the Earth are 
preserved unaltered on the map. (It  is geometrically obvious 
that this definition is equivalent to the preceding.) 

I t  follows from either of these definitions that orthomorphic 
projections preserve the shapes of small areas unaltered, though 
the scale on which they are represented varies from point to 
point upon the map. At first sight this preservation of shape 
appears to be an important property. I t  should however be 
remembered that, so long as we do not attempt to represent too 
large a fraction of the whole Earth upon one map, a great many 
of the usual projections are pretty nearly orthomorphic for small 
areas; while if we remove the restriction to small areas the 
general shape is often better preserved in projections which are 
not orthomorphic than in those which are. 

The representation of true bearings and distances. 

We have just seen that the definition of orthomorphism 
restricts the property to very small areas; and that the existence 
of perfect orthomorphism, according to definition, is no guarantee 
even for the approximate presetvation of the shape of large 
configurations. 

We want some criterion for the degree of success of a given 
projection in preserving the shape of a country from gross 
distortion, and we shall find it useful to consider how far the 
true bearings and distances from point to point are preserved. 
For example, we have a map of Europe on a given projection, 
and we enquire: What is the percentage error of the repre- 
sentation of the distance from Hanover to St  Petersburg; or 
what is the error in the azimuth of this line. Such questions 
cannot be answered by considering very small areas. 

There is a class of projections sometimes named azi~lzuthnf, 
from the fact that the azimuths, or true bearings, from the centre 
of the mop, of all points, are shown correctly. One of these 
azimuthal projections also shows distances from the centre 
of the map correct, and is called the azimuthal equidistant 
projection. We shall find it useful to ask of each projection, how 
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nearly does it approximate to the azimuthal equidistant, and 
further, how well does it preserve azimuths and distances, not 
only from the centre, but from any other point? 

The objection to the term azimuthal is that it is hard to 
pronounce, and several writers have followed Germain in calling 
always this class of projection zenithal. Since their most 
prominent and valuable property is the preservation unaltered 
of azimuths, or true bearings, from the centre, it appears to the 
writer that the former name is preferable to the latter, and that 
it is unfortunate that zenithal, which has no very clear meaning, 
should replace aziuzuthal, whose meaning is precise. We shall 
not, however, try to return in this book to the older fashion. 

Ease  of drawing. 

This is a property which is theoretically uninteresting, but 
which is, in practice, of extreme importance. As a general rule, 
projections which are not built up of straight lines and circles 
are hard to draw. This rule excludes at once all the strictly 
geometrical projections, except the stereographic, which is built 
entirely of circles. 

Further, arcs of circles of very large radius are hard to draw; 
and for this reason graphical constructions often break down 
somewhere or other, requiring circles too large for the drawing 
table. 

In such a case a series of points on the circle must be 
computed or constructed graphically. Hence the formulae of 
computation become very important. 

We shall ask ourselves at the end of the section on each 
projection : Is it easy to draw, or can tables for it be constructed 
easily ? 

T h e  choice of projection for a map. 

It is clear that we cannot say anything in detail upon this 
subject until we have examined the properties of the pri~lcipal 
projections in use. Rut we shall do well to bear in mind from 
the beginning that there are three broad classes of maps : 

( a )  Maps of the whole world or of a hemisphere, on one 
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sheet. We may call any map that represents a hemisphere, or 
more, a World Map. These will always be on small scales. 

(p)  Maps which show a considerable portion of the Earth, 
such as a continent, but not a whole hemisphere. These will 
also be on a small scale. We shall find it convenient to call 
them Atlas Maps. 

(y) Maps on a comparatively large scale, each represent- 
ing in detail a fairly small area of country. We may call these 
Survey Maps. 

The projections for maps in sections (a) and (P)  will generally 
be constructed independently for each map, and there will be no 
question of adjacent maps fitting. But it may be thought 
desirable that the sheets of a Survey map should fit together, so 
that they may be combined to form larger maps if necessary. 
This will require that the projection for the whole survey should 
be determined, and that each sheet should not be plotted inde- 
pendently but should be a definite part of this projection. We 
shall see that this is practicable only for a small country like 
Great Britain, and has in any case considerable disadvantages. 

It is evident, however, that in the use of Survey maps, the 
question of projections does not often arise. Each sheet covers 
so small a portion of the whole surface of the Earth that it is 
practically a perfect represen tation, if  the original choice of a 
projection for the Survey has been well made, and more 
particularly, if  the perpendicularity of meridians and parallels 
is preserved. This reservation is of prime importance. 

Atlas maps cannot be treated as practically errorless. In 
these the errors in scale, area, and shape become considerable, 
and are unavoidable. We cannot make measurements upon the 
map until we know the errors which are due to the projection. 
We shall therefore arrange our detailed consideration of pro- 
jections so as to give the common Atlas projections as much 
prominence and priority as is consistent with an orderly 
development of the subject. 
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T H E  PRINCIPAL SYSTEMS O F  PROJECTIONS 
CONICAL PROJECTIONS 

THE greater number of useful projections for Atlas maps 
belong to one or the other of two great classes, the Conical 
(including the cylindrical) and the Zenithal projections. These 
names describe the method of construction. I t  is useful to give 
each projection a second name which describes its principal 
property, such as equal area, orthomorphic, and so on. We 
shall therefore describe projections as the Conical equal area, 
the Zenithal orthomorphic, the first, or generic name, describing 
its construction, the second, or specific name, its most important 
property. When the name of the inventor, Lambert or Gauss, 
Sanson or Delisle, is usually associated with the projection, we 
may give it in brackets, thus : Conical orthomorphic with two 
standard parallels (Lambert's second, or Gauss'). 

We shall find, however, that this principle of nomenclature 
cannot be made to cover all cases without some appearance of 
pedantry, and that there are well known projections, such as 
Mercator's or the Stereographic, which will be treated in their 
systematic places but referred to generally by their simple 
names. Thus the Stereographic projection is a zenithal ortho- 
morphic; but as it is one of several which can be thus named, 
it is convenient to call it simply the Stereographic. 

We shall find, also, that this way of naming projections is 
convenient, rather than consistently logical. For zenithal pro- 
jections are, from one point of view, only special cases of conical. 
Moreover, all zenithal projections are azimuthal, so that one 
of the principal properties of this class of projection is implied 
in its generic name. Thus a zenithal equal area projection has 
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two important properties: it is both azimuthal and equal area. 
But as we become familiar with the subject this want of strict 
consistency in the nomenclature will not be a serious difficulty. 

We shall find it best to defer the consideration of the classi- 
fication of map projections until we have become acquainted 
with the more obvious properties of each projection. I t  will 
then be evident that a logical classification requires in the first 
place a re-consideration of the names which are given to the 
projections. Inasmuch however as a disturbance of the accepted 
names, even though they are unsystematic, would certainly create 
more confusion than it would remove, we shall find it best to 
retain the generally accepted names, taking Germain's Traite' des 
prq'ections as our standard authority, and shall make suggestions 
for a more logical nomenclature only in our discussion of classi- 
fication, without attempting to introduce any reform of such 
doubtful advantage into the body of the work. 

Conical projections. 
In all the usual conical projections the meridians are straight 

lines converging to a point, the vertex, and the parallels are 
concentric circles described about that point. 

The meridians are equally spaced, and make with one 
another angles which are a certain fraction ~t of the angles 
which the corresponding terrestrial meridians make with one 
another at  the poles. The quantity n we will call the constant 
of the cone. I t  must lie between the values o and I.  

The spacing of the parallels depends upon the particular 
property which we wish the projection to fulfil. 

One parallel, and sometimes a second, is made of the true 
length ; that is to say, if the map is to be on the scale of one- 
millionth, the length of the complete parallel on the map will be 
one-millionth of the corresponding terrestrial parallel. This is 
called a Standard parallel. 

Simple conical projection with one standard parallel. 
Suppose that we begin by constructing the Conical projection 

with one standard parallel. If R is the radius of the Earth 
(supposed spherical) and + the latitude of the selected parallel, 
the length of the parallel is 2.rrR cos #. 
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Describe with radius R cot + an arc whose length is ZTR cos 4, 
the length of the standard parallel. This arc will subtend a t  
the centre of the circle an angle 27r sin +, and the constant of 
the cone is sin 4. 

Divide the arc into 36 parts, and join each dividing point 
to the centre. These lines will represent the meridians a t  
intervals of roo. 

Along any one of these meridians lay off distances above 
and belo\v the standard parallel equal to the distances from the 

Fig. 3. 

standard parallel to each parallel of even ten degrees, the 
distances being reduced to the scale of the map. Describe 
circles through the points so obtained, concentric with the 
standard parallel. These will be the parallels of our projection 
at intervals of 10". 

Consider briefly the properties of this projection. 
The scale along every meridian is correct, as is the scale 

along the standarcl parallel. I t  is easy to show that the scale 
along any other parallel is too great, and that the error increases 
as we get further away from the standard parallel. 
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The projection is evidently not equal area ; for the meridians 
and parallels are at right angles to one another, and the scale is 
correct along the meridians and wrong along all parallels but one. 
The percentage error in the representation of any small area is 
evidently the same as the percentage error of the scale of the 
parallel through it. 

The projection is evidently not orthomorphic, since the scale 
is not the same in all directions at any point. The projection is 
easy to draw, unless difficulty is found in describing circular arcs 
of very large radius, and straight lines converging to a distant 
point. 

The projection is evidently good for any extent of longitude 
along the standard parallel. But north and south of it the 

Fig. 4. 

errors of scale along the parallel continually increase ; and the 
parallel of latitude go", the pole of the hemisphere containing 
the standard parallel, is represented not by a point but by 
a circle. This shows that the projection is unsuitable for repre- 
senting high latitudes ; the smaller extent in latitude it has, the 
better. 

I t  is easy to see geometrically that if the complete projection 
were cut out and rolled into a cone, it could be placed to touch 
a model of the Earth, constructed on the scale of the map, along 
the standard parallel. 
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On this account it is usual in text books to begin the study 
of this projection by supposing the tangent cone constructed, 
and afterwards cut along a generator and laid out flat. But this 
way of regarding it is a little dangerous, since it may lead the 
beginner to suppose that the projection is made by geometrically 
projecting the parallels and meridians of the Earth on to a 
tangent cone. 

The meridians may indeed be obtained in this way by 
projection from the centre of the Earth ; but the parallels cannot 
be, for they encircle the cone a t  their true distances apart ; and 
it is evident that one cannot project a series of parallel circles on 
the sphere into a system of parallel circles the same distance 
apart upon the tangent cone. This is easily seen by a study of 
Fig. 4. 

The simple conical projection is very much used in Atlas 
maps of countries not too large. 

Its principal defect is the increasing error of scale along the 
parallel as one leaves the standard parallel. This can be much 
diminished by making two standard parallels instead of one. 

The conical projection with two standard parallels and 
true meridians. 

Suppose that we select two parallels, one towards the top 
and one towards the bottom of our map ; and make them both 
the correct length, and the true distance apart. Given these 
conditions we can easily find the radii of the circular arcs for 
the two standard parallels (see Chap. VIII). And when these 
are found, the meridians and the other parallels may be con- 
structed as in the preceding casc. 

The scale is correct along all the meridians, and along the 
selected standard parallels. I t  is easy to sl~ow that between the 
standard parallels the scale along the parallel is too small ; 
outside it is too large, as in  the preceding projection. But the 
error does not increase nearly so rapidly as it does in the former 
casc. Hence the conical projection with two standard parallels 
is much better than that with only one standard parallel, for all 
maps with a considerable extent of latitude. 

The same considerations as before show that the projection 
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is neither equal area nor orthomorphic. But it is more nearly 
so than the preceding, since the errors of scale are smaller. 

I t  is easy to draw. 
As before, the pole is represented by a parallel of finite 

length, which makes it clear that the projection is useless in 
extreme latitudes. 

This is one of the best of all projections for an Atlas map, 
but its merits have been very much overlooked until recently, 
when it was adopted for the original one in a million maps of 
Great Britain and of India, only to be displaced by the re- 
solutions of the International Map Comn~ittee (see page 56). 

This projection is commonly, but quite wrongly, called the 
" secant conic" projection, as distinguished from the simple or 
"tangent conic" projection described above. But it is clear that 
the description is false. If we passed a cone through the two 
selected standard parallels upon the sphere, cut it along a 
meridian, and laid it out flat, it would not give the same projection 
as that which we are now considering. The two standard 
parallels would be of the right length, but they would evidently 
not be at the right distance apart;  in fact the distance between 
them would be a chordof the sphere instead of the corresponding 
arc. The beginner must take great care to avoid this mistaken 
idea of the nature of the conical projection with two standard 
parallels. 

The conical equal area projection with one standard 
parallel. 

In all conical projections the scale along the parallels is 
incorrect, except for the standard parallel or parallels. Hence 
if  we wish to make an equal area conical projection we must 
suitably modify the distances between the parallels, and make 
the scale along the meridians incorrect in the inverse propor- 
tion. 

Suppose, for example, that we wish to modify the simple 
conic with one standard parallel, to make it equal area. 

Let 4, be the latitude of this parallel. We shall show later 
(Chap. VIII )  that we may attain the desired result by the following 
means : 
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Keep the standard parallel its correct length, but describe it 
with radius 

2K tan 4 (go0 - 4,) instead of R cot +, or R tan (go0 - +,). 

The cone is no longer the tangent cone at  the standard parallel. 
And the constant of the cone becomes cos2 4 (go0 - 4,) instead 
of sin 4,. 

Instead of marking off the other parallels at their true 
distances, describe them with radii computed by the formula 

radius for lat. C# = 2R sec 4 (90' - 4,) sin 4 (go0 - 4). 
We shall prove later (loc. cit.) that this construction gives an 

equal area projection. 
The scale along both meridians and parallels is wrong, in 

inverse proportions. I t  is consequently less orthomorphic than 
either of the two preceding projections, in which the scale along 
the meridians was correct. 

It  is easy to compute and as easy to draw as other conical 
projections. 

Unlike the preceding conical projections, the pole is not 
represented by a parallel, but by a point, the vertex. This does 
not, however, make it any more suitable for the representation 
of the polar regions, the whole of which are included on the 
map in a sector of angle 2727r= 27r cos2h (go0 - +,). 

On the side of the standard parallel towards the vertex the 
scale along the meridians increases quickly; and since the 
projection is equal area, it follows that the scale along the 
parallels decreases in inverse proportion. On the opposite side 
of the parallel the reverse takes place. In the former case the 
configurations are elongated north and south; in the latter case 
east and west. Hence the projection is not useful for a map 
having great extension in latitude ; and it has been employed 
very little. 

We should note that, though the above is what is always 
known as the conical equal area projection, it is not by any 
means the only one possible. Without altering the constant of 
the cone, or the angles between the meridians, one may so 
modify the distances between the parallels that the scale along 
the meridians is inversely proportional to the scale along the 
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parallels. The projection is then equal area ; and since a cone 
of any angle may be treated in this way, there is an infinite 
class of conical equal area projections, of no particular value or 
interest. 

The conical equal area projection with two standard 
parallels (Albers'). 

By a different modification we can obtain a conical equal area 
projection with two standard parallels, as follows. 

Let +,, +, be the latitudes of the parallels chosen as standard, 
and R the radius of the Earth. 

The standard parallels are described of their correct lengths, 
but with radii Y,, r, given by 

r1 = KK cos Y, = kR cos 5b2, 

where K = cosec 4 (+, + +,) set 3 (4, - $4- 

And the radius r of any other parallel + is given by 

1'2 = 2&R2 (sin 4, - sin +) + r12, 

= 2kR2 (sin 4, - sin 4 )  + r,2. 

The constant n of the cone is 

or 3 (sin 4, + sin 4,). 

We shall show in Chap. VIII that this gives an equal area 
projection. 

I t  is rather troublesome to compute, but as easy to draw as 
other conical projections. 

The scale along both parallels and meridians is incorrect, and 
it is not so orthomorphic as the ordinary conic with two standard 
parallels. 

Outside the standard parallels the scale along the meridians 
is too small, and the defect becomes more pronounced the further 
the extension of the map north and south. The pole is repre- 
sented by a parallel. Within the standard parallels the scale 
along the meridians is too large. Since the projection is equal 
area, the scale along the parallels is inversely proportional to 
the scale along the meridians. 
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This projection has been used for maps of Russia, and also 
for the Austrian General Staff map of Central Europe. 

Conical orthomorphic projection. 

All conical projections have their meridians and parallels 
intersecting a t  right angles, which is the first essential for 
orthomorphism. But in the projections already described the 
scale along the meridians and parallels is different. If they can 
be modified so as to make the scale the same in these two 
perpendicular directions (and consequently in all directions) at 
any point, they will become orthomorphic. 

Let x be the co-latitude (=go0- the latitude) of a parallel ; 
and Y its radius upon the projection. I t  is easy to show that if 
Y is computed by the formula 

Y = m (tan + ~ > n ,  
the projection is orthomorphic. 

m is a constant which defines the scale. We will consider 
its value later. 

11 may have any value between o and I ; and by varying n 
we have a whole series of conical projections, all of which are 
orthomorphic. The angle between two meridians upon the 
projection is n times the angle between them on the Earth;  
and we call n the constant of the cone. 

We can choose the constant m so that any desired parallel is 
its true length. 

I f  the parallel of co-latitude X ,  is to be the standard parallel, 
it is easy to show that 

R sin X, 
9l.t = 

tr (tan 4 XJn ' 

We still have the constant of the cone, n, a t  our disposal. 

If we choose it so that the cone has the same angle as the cone 
of the simple conic projection, which will touch the Earth along 
the standard parallel, then 

12 = cos X,.  
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The conical orthomorphic projection with one standard 
parallel may therefore be constructed from the formula 

Y = R  tan XO . (tan ~ X ) ~ o ~ ~ o .  
(tan * x ~ ) ~ ~ ~ x ~  

The scale will be correct in all directions at points along the 
standard parallel (for the projection is orthomorphic). Elsewhere 
the scale will be too large. 

As the scale increases on each side of the standard parallel, 
it is clear that there will be pairs of parallels, one on each side 
of the standard, for which the scale is the same. And it is easy 
to show that one such pair of co-latitudes X, and X, are con- 
nected by the relation 

log sin X, - log sin X, 
72 = 

log tan ax, - log tan +x, ' 
The scale at points along this pair of parallels is the same, 

but it is not correct, since it differs from the scale along the 
chosen standard parallel. But we have only to change the 
scale constant of the map, and we have evidently a conical 
orthomorphic projection with two standard parallels instead of one. 

The two maps are precisely similar except in scale. All 
questions of deformation and variation of scale are the same 
upon the two. But it is an obvious advantage to the general 
accuracy of scale of the map to have two parallels standard 
instead of one. Hence when the conical orthomorphic projec- 
tion is used, it is always that with two standard parallels, which 
is Lambert's second, or Gauss'. 

The conical orthomorphic projection with two standard 
parallels. 

The two parallels which are to be standard are chosen, of 
co-latitudes X ,  and x,. The constant of the cone, n, is given by 
the relation 

log sin X, - log sin X, 
92 = -. 

log tan +x, - log tan ax,'  
and the radii, as before, are given by 

Y = l l ~  (tan 3 ~)7 , ,  

where nz = R sin ~ , / n  (tan 3 ~ ~ ) "  Or R sin xa/n (tan 4 ~ 9 ) " .  
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It is easily seen that 992 is the value of Y for the equator. 
In these conical orthomorphic projections the pole is a 

point-the vertex of the cone. 
The scale increases north and south. If one parallel is 

standard, the scale at any point not on this parallel is too great. 
If two parallels are standard, the scale between them is too 
small, and outside them is increasingly too great. Hence like 
all other conical projections, they are unsuitable for maps having 
a great extension in latitude. For maps in which the range of 
latitude is not too great the scale error can be kept fairly small 
when two selected parallels are standard. Hence areas are well 
represented. And in spite of the apparent complication of the 
expressions for n and Y the projection with two standard parallels 
is easy to compute, and no harder to draw than any other conical 
projection. I t  makes an excellent map of a country like Russia, 
but has not come into general use, except in Debes' Atlas. 

General remarks on the conical projections. 

We have seen that the true conical projections have a range 
of properties sufficiently wide to make them appear, at first sight, 
a very useful and valuable family-they may be made nearly 
true to scale over a fairly wide area, and consequently nearly 
equal area and nearly orthomorphic; or they may be made 
precisely equal area and less orthomorphic; or precisely ortho- 
tnorphic and less equal area. But the fact remains that the 
equal area and orthomorpliic projections have been used very 
little; while until lately the ordinary conic with two standard 
parallels has been almost equally neglected. There remains the 
true simple conic, which has been very much used for small 
atlas maps. 

In the following chapters we shall have to investigate in 
greater detail the numerical properties of these different projec- 
tions, and we shall find at any rate a partial explanation of 
these facts. For small countries it will appear that the various 
projections are il l  practice almost indistinguishable ; and the 
sirnple conic is so satisfactory that it is not worth while to 
trouble about the more cotnplicated forms which give equal area 
or orthomorphism. 
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For maps covering a larger extent of the sphere we shall find 
that it is very desirable to use two standard parallels instead of 
one. But so far as orthomorphism is concerned, the so-called 
orthomorphic projections are little better than the others at 
representing the true shapes of large configurations. As we 
have remarked before, orthomorphism is often more interesting 
mathematically than valuable practically, and so long as a map 
has no distortion in very small areas but considerable distortion 
in larger, so long will the fact that it is theoretically orthomorphic 
be of small value in practice. 

The equal area property is of more practical importance, 
especially for statistical and political maps. And the reason 
why true conical equal area projections have not come into use 
may be found in the fact that there are two so-called "modified" 
conical projections which are equal area, and which are easier to 
draw than the true conical equal area projections. We shall 
discuss them later. (See Chap. VI, p. 52.) 

We have already insisted that ease of drawing is a property 
which must be carefully considered. A t  first sight it may seem 
that all the true conical projections, built up of straight meridians 
diverging from a point, and circular parallels centred upon that 
point, must be easy to draw. This is true of very small scale 
maps ; but when the scale is a t  all large the centre of the 
parallels is found to come a t  a considerable distance outside 
the map which is under construction. This introduces some 
difficulty in drawing the parallels, which can however be over- 
come. If space is available, it is not hard to construct a beam 
compass to describe arcs of radii up to say twelve feet. Or arcs 
of this large radius may be drawn by means of the circular 
curves which are often found in the equipment of a drawing 
office. But it is far more difficult to draw the set of straight 
meridians intersecting in a point twelve feet from the map, since 
this requires a very long straight edge, which is not so common. 

There is however little difficulty in computing the positions 
of a pair of points on each meridian, from which it may be 
constructed ; and there is not much excuse for the adoption of 
the so-called " simplified " conical projection, which has been 
much used in at least one modern atlas. 
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Oblique conical projections. 

We have spoken, so far, only of izormal conical projections- 
that is to say, of projections in which the vertex of the cone lies 
on the axis of rotation of the Earth, and the straight lines con- 
verging to the vertex represent meridians. There is, however, 
nothing in the nature of conical projections to confine them to 
this normal form. They may be constructed obliquely, so that 
the concentric circular parallels of the projection no longer 
represent parallels of latitude, but parallel small circles described 
about any selected point of the sphere. W e  shall have to refer 
to these projections at a later point ; but we shall do so very 
briefly, since they are at present more curious than of practical 
importance. One or two maps have actually been constructed 
in this way in Germany, and small specimens of them are given 
in  Zoppritz-Bludau*, p. go, and Hammert,  plates I1 and IV. 
They have the remarkable defect that the meridians are not only 
not straight, but they have a sudden change of curvature in the 
neighbourhood of the principal axis of the map, which is a great 
disfigurement. I t  is difficult to believe that oblique conical 
projections will come into general use. 

In all the true conical projections the angles which the 
meridians make with one another are controlled by a constant 
7t which we have called the constant of the cone. The value of 
?t lies between o and I ; the angle between any two meridians 
of the projection is 7z times the true angle between those meridians 
at the pole of the Earth ; and consequently the whole map is 
comprised in a sector of which the angle at the vertex is n ,360". 

Zenithal projections. 

As 71 increases we may imagine the cone getting flatter and 
flatter until when 1.c becomes equal to unity it beco~nes a plane, 
and the boundary of the whole map becomes a perfect circle, 
instcad of a sector 

I f  it is a normal cone which is thus degenerating, it becomes 

* J,eitTaden tler I<nrtenentwurfslehre ... Karl Zoppritz ; I~erausgegeben Iron Alois 
Rlutlnu, 1,eipzig I Rgg. 

t tJl)er dic geographisch wichtigsten Kartenprojektionen .... I?. EIammer, 
Stuttgart I 889. 



22  THE PRINCIPAL SYSTEMS OF PROjECTIONS 

eventually a plane touching the sphere a t  the pole. If the cone 
is not normal, it becomes a plane touching at  some other point. 
And just as we have found it sometimes helpful to think of the 
conical projections as constructed on a cone which may be cut 
and rolled out flat, so we shall find it convenient to think of these 
degenerated conical projections as constructed upon a tangent 
plane to the sphere. They form an important class, the zenithal 
or azimuthal projections, in which the true bearings from the 
centre are preserved. 

Cylindrical projections. 

On the other hand, as the constant of the cone H becomes 
smaller, and the solid angle at  the vertex of the cone more acute, 
we may imagine that the vertex is removed further and further 
from the sphere, until when n becomes zero its distance is 
infinite, and the cone has become a cylinder, touching the sphere 
along the equator if the axis of the cylinder is normal, and along 
some other great circle if the axis is oblique. 

The cylindrical projections, with one exception, Mercator's, 
are not in common use. A few examples occur in German 
Atlases, to  which we shall refer later. But, generally speaking, 
the normal cylindrical projections have little merit, while the 
transverse are complicated and difficult to draw without offering 
any noteworthy advantages. We may exclude them from 
lengthy consideration, for they can very obviously be derived 
from conical projections, if necessary. 

Geometrically speaking, the zenithal projections are equally 
conical. But practically they form a class whose constructions, 
and whose merits, are so different from those of the conical 
projections, that it tends to clearness if  we treat them separately. 
This follows more especially from the fact that while the use of 
conical and cylindrical projections is confined almost entirely to 
their normal forms, the zenithal projections are generally oblique, 
that is to say, the tangent plane on which we may imagine them 
constructed is not generally tangent at the pole, but at some 
other point of the sphere, in the centre of the proposed map. 
All of them preserve the true bearings or azimuths of all points 
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from this centre, whence their name, azimuthal; and points 
which are equidistant from the chosen centre upon the Earth 
are found to be also equidistant, though not necessarily a t  the 
right distance, from the centre of the map. These are properties 
which differentiate them in practice from the usual conical and 
cylindrical projections, and will justify us in treating thein as a 
separate class of projections. 

Summary. 

We may summarize our general consideration of the conical 
projections, then, as follows : 

A conical projection should be defined as a projection in 
which a set of radiating great circles on the globe is represented 
by a set of straight lines radiating from a centre; and the 
corresponding system of small circles on the globe, at right 
angles to the great circles, by a set of circles described about 
this centre, and consequently at right angles to the radiating 
straight lines *. 

This definition includes all cases of conical, cylindrical, and 
zenithal projections, oblique as well as normal. 

But whereas conical and cylindrical projections are generally 
normal, zenithal projections are generally oblique. In the 
former case, the radiating straight lines are the representations 
of the meridians of longitude, the concentric circles of the 
parallels of latitude ; and this is so convenient and generally 
desirable that it tends in practice to separate this class of 
projections from the zenithal in which the radiating straight 
lines are lines of equal bearing from the centre, the concentric 
circles are lines of equal distance from the centre. Were these 
systems of lines shown upon the map, then the analogy with the 
ordinary conical projectio~~s would be evident. But in practice 
thcy arc not shown. The lines which are shown are the meridians 
and parallels, and for oblique projections these are not straight 
lines and circles. Bearing in mind, therefore, the fact that all 
are included in the broad definition of conical projections, we 
shall ncvertheless find it convenient to treat the zenithal or 

Colonel C. F. Close, C.M.G., R.E. The Geographical Teachm, Vol. IV, p. I 58. 
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azimuthal projections apart from the ordinary conical and 
cylindrical. 

There is also another reason for this division. Conical and 
cylindrical projections may be excellent for representing a 
portion, even a large portion, of the sphere. But they are very 
little use for the representation of a complete hemisphere, and 
still less of the whole sphere*. On the other hand, zenithal or 
azimuthal projections include some of the more interesting of 
those projections which will represent a hemisphere or more, and 
this tends to emphasize the practical convenience of separating 
zenithal from conical projections, even though from the purely 
geometrical point of view they ought to be kept together. 

I t  may appear that this statement is contradicted by the fact that Mercator's, a 
cylindrical projection, is much used for maps of the World. Eut this is done by 
sacrificing the polar regions. A map of a complete hemisphere on Mercaror's pro- 
jection extends to infinity. 



CHAPTER 111 

CYLINDRICAL PROJECTIONS 

WE have already remarked that cylindrical projections are 
limiting cases of conical projections, when the constant of the 
cone, n, becomes equal to zero. I t  will be convenient to go 
quickly through the list of conical projections which we have 
already treated, and see what happens to them when n becomes 
zero. Any of the resulting cylindrical projections which are of 
value can be considered more in detail afterwards. 

Simple cylindrical. 

In the simple conical projection with standard parallel of 
latitude +, we have, with the usual notation, 

~t = sin +,, yo = R cot +,, and Y = k' {cot +o - ( 4  - 40)}n 

If 72 is zero, +, is zero, and the standard parallel is the equator. 
The radius yo of the equator on the projection becomes infinite ; 
but Y, - Y = R+ and is finite. 

We have as a result the simplest and most conventional af 
all projections, called by the French " projection plate carrde " 
and by the Germans " quadratische Plattkarte," but for which 
there does not seem to be any English name. The meridians 
and parallels are two sets of equidistant straight lines cutting at 
right angles and forming a series of squares. Distances along 
the meridians and along the equator are correct; distances 
along the other parallels very soon become glaringly incorrect; 
and the projection is of no value. We shall not consider it 
further. 
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Cylindrical with two standard parallels. 

In the ordinary conical projection with two standard parallels 
of latitudes +, and +,, we have, with the usual notation (see 
Chap. VIII), 

cos 4, - cos +, 
n = 

J "1 = 
R ( 4 2  - 4)  cos +I 

42 - +l COS +, - COS +, 
and Y, - Y = R (+ - +I)- 
If n is zero, we have +, = - +,, which makes r1 infinite, but y l -  Y 

remains finite. 

We have as a result a very conventional projection differing 
from the last only in the respect that two parallels, a t  equal 
distances north and south of the equator, are represented 
correctly. The scale along parallels distant from the two 
standards is very incorrect. The meridians and parallels form 
a series of rectangles instead of a series of squares. Hence the 
French name "projection plate parallClogrammatique," and the 
German "rechteckige Plattkarte." There does not seem to be 
any English name for it, which is of small consequence, as the 
projection has obviously no serious value, and will not be con- 
sidered further in this book. 

Cylindrical equal area. 

In the simple conical equal area projection, with one standard 
parallel of latitude +, we have, with the usual notation, 

?z = cosa 8 (go0 - +,), yo = 2R tan 4 (90" - +o), 

Y = 212 sec 4 (90° - $3,) sin 3 (go0 - 4). 
If n = 0, +, = - go0 ; that is to say, the south pole becomes the 
standard parallel. In this case the projection clearly shuts up 
into a line along the axis of the cone, normally the polar axis of 
the Earth, and is of geometrical interest only. We need not 
consider i t  further. 

In Albers' conical equal area projection, with two standard 
parallels of latitudes +, and +,, we have, with the usual notation, 

n = 4 (sin +,+sin 4,) = r/k, Y, = kXcos+, ,  

ra = 2kK2 (sin +, - sin 4) + ria. 
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When n is zero, 4, = - 4,, that is, the standard parallels are 
equidistant north and south of the equator ; Y, becomes infinite, 
but we can show that Y, - Y remains finite, and = R sin 4, the 
expression for the cylindrical equal area projection, which is of 
some value. The derivation of this projection from that of 
Albers' is interesting as showing how it fits into the general 
theory of conical and cylindrical projections. I t  is more usual, 
however, to derive it independently, as follows. 

The cylindrical equal area projection is one of the few which 
are really projections in the geometrical sense. If we imagine 
a circumscribing cylinder touching the sphere along the equator, 
and if through any point of the sphere we draw a perpendicular 
to the axis, and produce it backwards to cut the cylinder, then 
it is evident from the figure that we have the projected point on 
the cylinder at  a distance R sin 4 from the equator, which gives 
the same law for the projection that we found before. Also it is 
a well-known geometrical property that a small area on the 
sphere is unaltered by projection in this way on the cylinder. 
I t  follows that this geometrical projection of the sphere upon 
the circumscribing cylinder is an equal area projection. 

Other properties of the projection are easily derived from 
the figure. Thus 

( I )  The scale along the parallels increases rapidly north 
and south of the equator, for all the parallels on the cylinder are 
equal, whereas the corresponding parallels upon the Earth are 
to the equator in the ratio cos C#J : I .  

( 2 )  The scale along the meridians decreases rapidly 
north and south of the equator, for in the projection a degree of 
latitude becomes more and more foreshortened. 

(3)  These considerations show that the projection is very 
far froin being orthotnorphic, although the meridians and parallels 
cut at right angles. 

The projection is very easy to draw, but its great distortion 
and inequalities of scale in high latitudes make it of little use. 
We shall have no need to consider it in greater detail. 

Cylindrical orthomorphic (Mercator). 

In the conical orthomorphic projection with a standard 
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parallel of latitude +o, or co-latitude X, = go" - +o, we have, with 
the usual notation, 

Y = m (tan * x ) ~ ,  

where sin xo m = R  
n (tan b ~ 0 ) ~  ' 

and the value of n is still at  our disposal. But if we wish the 
cone to have the same angle as the tangent cone along the 
parallel of x,, then n = cos x,. 

If now we take the equator as the standard parallel, 
n = cos go0 = o ; llz becomes infinite, but mn = R  and is finite. 
Both Y, and Y become infinite. 

We can however show, as will be done in Chap. VIII, that 
R  ro - Y is finite, and = - 
M 

log tan (45' + &+), where the logarithms 

are the common logarithms, and M is their modulus, whose 
reciprocal is 2.30259. 

The parallels are then circles of infinite radii, or straight 
lines; and the distance of any parallel of latitude 4 from the 
standard parallel, the equator, is given by 

y = 2.302 59 R log tan (45 O + 4 $), 

the length of the equator, on the same scale, being 

Hence the cylindrical orthomorphic, or MercatorJs projection, 
is a special case of the conical orthomorphic projection. 

The meridians are parallel straight lines; and the distance of 
dL 

any one from the central meridian is given by x = - 800 . R, where 

dL is the difference of longitude from the central meridian. 
The parallels of latitude are parallel straight lines at right 

angles to the meridians, and we have just seen that their 
distances from the equator are given by 

y = 2'30259 R log tan (45' + 44). 

The projection is orthomorphic, for it is a special case of the 
conical orthomorphic. And it is easy to prove the property inde- 
pendently, from the above expressions for x and y. (See p. 104.) 

The scale along the parallels is evidently the scale along the 



equator x sec 4 ; and rapidly becomes erroneous as the latitude 
increases. 

Since the projection is orthomorphic, the scale along the 
meridian at any point is the same as the scale along the parallel. 
Hence the scale of areas at any point is the scale of areas a t  the 
equator x sec2 4. 

The distance between successive parallels increases rapidly 
with the latitude, and the poles are a t  infinity. Hence it is 
obvious that the projection is entirely unsuited for representing 
high latitudes. 

The values o fy  are tabulated, and the projection is very easy 
to draw. I t  is usual to find in Atlases a map of the World on 
Mercator's projection, and these maps are responsible for very 
much misconception as to the size of northern countries such as 
Siberia, Greenland, or the northern portions of the Dominion of 
Canada. A comparison of the shape of Greenland on Mercator's 
projection and on a projection suitable for the polar regions 
respectively, gives a very excellent idea of how bad an ortho- 
morphic projection may be in representing shape. 

Use in navigation. 

The great distortion in the north and south makes Mercator's 
projection altogether unsuitable for a land map. Its celebrity 
is due to the fact that it is invaluable for marine charts, and the 
reason is easily seen: the compass course between any two 
points on a Mercator chart is the straight line joining them. 
This follows at once from the two properties ( I )  that the 
projection is orthomorphic, and (2) that the meridians are 
parallel straight lines. Hence a ship's course from point to 
point can be taken at once from the chart. 

We must be careful to distinguish, however, between the 
compass course and the great circle course. The straight line 
on a Mercator's chart is the compass course ; that is to say, if 
the line drawn from A to B on the chart is 75" west of north, a 
ship starting from A and sailing continually on the course 
N. 75'W. arrives at U. (The variation of the compass is of 
course neglected in this statement.) The shortest distance from 
A to U is not the course of equal bearing throughout, but is the 
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great circle course, which in the northern hemisphere will lie to 
the north, and in the southern hemisphere to  the south of the 
compass course. W e  cannot enter into the question of great 
circle sailing here. (But see p. 41, on gnomonic or great circle 
charts.) T h e  fact that a long voyage is not generally made 
on a uniform compass bearing does not alter the  fact that  the 
use of the Mercator chart in navigation is almost universal. 

W e  shall consider its construction and properties more in 
detail in Chapter VIII.  



CHAPTER I V  

ZENITHAL PROJECTIONS 

I N  our General Remarks on the Conical Projections we 
mentioned very briefly the modification which a conical projec- 
tion undergoes in the limiting case when the constant of the 
cone, 72, becomes equal t o  unity. Suppose first of all that  the 
projection is normal. T h e  straight lines radiating from the vertex, 
which represent the meridians, then make the same angles with 
one another that  the meridians do  ; they are no longer confined 
to  a sector, but are disposed symmetrically round the vertex. 
The  parallels are now complete circles, not arcs of circles, with 
the  vertex as their common centre. And in the same way that  
it was found helpful sometimes to  think of the conical projec- 
tions as drawn upon a cone, so with the zenithal projections we 
may think of them as constructed upon a plane tangent t o  the 
sphere a t  the vertex. 

We remarked further that  the zenithal projections are not 
restricted in use to  normal cases, as are the conical. The  
tangent plane is not necessarily tangent a t  the pole ; but is 
usually oblique to the axis of the Earth, and tangent t o  the 
Earth a t  whatever point we may wish to take as the centre of 
our map. The  equally spaced radii then represent, not of course 
meridians, but equally spaced great circles radiating from the 
chosen central point, lines of equal bearing or azimuth ; while 
the concentric circles are no longer parallels of latitude, but 
represent circles of equal distance from the central point. 

Following the plan which we adopted in our consideration 
of the cylindrical projections, we shall first consider briefly those 
zenithal projections which are only special cases of the conical 
projections with which we are already familiar. 



32 Z E N I T H A L  PROIECTIONS 

Afterwards we shall consider some other zenithal projections, 
and among them the so-called perspective projections, which 
are not special cases of any conical projections in general use, 
though conical projections analogous to them could be con- 
structed if it were desired. 

Zenithal equidistant projection. 

The Simple Conic with one standard parallel becomes the 
zenithal equidistant projection. I t  is clear by analogy that the 
standard parallel of the conical closes up into the centre of 
the zenithal projection, and that the parallel circles are spaced 
out at  their true distances from the centre. 

Hence in the zenithal (or azimuthal) equidistant projection 
the azimuths and the distances from the centre are true. The 
scale along the radii is everywhere true. The scale along the 
parallel circles is true only close to the standard parallel, that is 
to say, in this case true only close to the centre; at all other 
points the scale along the parallel circle is too large, and is 
increasingly erroneous as distance from the centre increases. 

For example, if the radius of the sphere is R, the parallel 

circle go0 from the centre has radius T R ,  and its length is 
2 

consequently r2R.  But the true length of this circle on the 

sphere is 2aR.  Hence on the projection its length is or 1-57 
2 

times its true length. 
I t  is clear, then, that the zenithal equidistant projection is 

far from being either equal area or orthomorphic. It is unsuit- 
able for representing so large an area as a hemisphere, but is 
quite suitable for a map illustrating polar exploration, for 
example, and is frequently so used in Atlases. 

The normal, or polar zenithal equidistant projection, is of 
course very easy to draw. I t  is equally easy to draw the radii 
and parallel circles for the oblique, or so-called horizontal 
projection, centred on some point of the sphere not the pole. 
But we generally wish to show on the map, not these radii of 
equal bearing and parallel circles of equal distance from the 
centre, but the meridians of longitude and the parallels of 
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latitude, which are not simple curves. T o  construct these we 
may proceed in either of two ways: 

I. We may construct them by transformation from another 
zenithal projection, the Stereographic, in which the curves in 
question are circles, and easily drawn geometrically. For this 
process, which is applicable to the whole group of zenithal 
projections, see Chapter VIII. 

11. We may construct the meridians and parallels by 
calculating the azimuths and distances from the centre of a 
sufficient number of their points of intersection, plotting these 
points, and drawing curves through them. There are tables in 
existence in which a number of these azimuths and distances are 
already computed, and these will generally suffice. See Chap. X. 

We shall discuss this projection more fully in Chap. VIII. 

I t  is evident that the ordinary conic with two standard 
parallels has no counterpart in the zenithal projections. For, as 
we have just seen, if the radii are divided truly, the scale along 
the parallel circles is too great everywhere except at the centre, 
and it is not possible to have two distinct parallels of their true 
lengths. 

Zenithal equal area. 

The conical equal area projection with one standard parallel 
becomes the zenithal equal area projection. In the normal case 
of the former, the radius of the parallel of co-latitude x is given by 

r = 2R sec JjX, sin &x. 
In the latter the radius of the parallel circle corresponding to 
an angular distance c from the centre is, by analogy, given by 

r = 2R sin i c ,  

xn, the co-latitude of the standard parallel, corresponding to 
c,, = 0, the angular distance from the centre of the standard 
parallel circle. 

In this projection azimuths from the centre are true, as in all 
zenithal projections. The scale along the parallel circles is too 
large; the scale along the radii is too small in inverse propor- 
tion, for the projection is equal area. 
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For example, the radius of the parallel circle representing an 
angular distance of go0 from the centre is, by the formula, 

2R sin 45" = d2. R, which is less than f R, the true distance. 
2 

The circumference of the parallel circle is 27rd2. R, which is 
greater than 27rR, the true length of the circumference. 

Since the scale along the radii and the parallel circles is not 
the same, the projection is clearly not orthomorphic. We shall 
see, however, when we discuss the errors of scale in detail 
(see p. 106) that the distortion is not great up to 30" from the 
centre, and that the zenithal equal area projection is, in con- 
sequence, valuable, and milch used in Atlases, for maps of a 
considerable area of the world, such as the continent of Africa, 
or Central Asia. 

What we said on the subject of drawing the zenithal equi- 
distant projection applies equally to the zenithal equal area. 

It  is clear that the conical equal area projection with two 
standard parallels (Albers') has no counterpart in the zenithal 
projections. The two standard parallels coalesce into the central 
point, and the general expression for the radius of the parallel 
of latitude +, in the normal conical projection, viz. 

becomes, when 4, = go0, Y, = o, k = I /lz = I ,  

r2= 2Ra ( I  - sin +) 

which reduces to r =  2R sin *C, as above, and we have the 
ordinary zenithal equal area projection. 

Zenithal orthomorphic (Stereographic). 

The general expression for the Conical orthomorphic projcc- 
tion is 

Y = m (tan $ x ) ~ ,  
where x is the co-latitude of a parallel, X ,  of the standard parallel, 
and R sin X ,  m = 

n (tan 4 ~ 0 ) "  ' 

Now when n = I and the standard parallel closes up into the 
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central point of the map, we have by analogy for the zenithal 
orthomorphic projection 

Y =  7% tan $C, 

and 
R sin C, 

m =  
tan *To 

= 2R cos &Co = 2R, since C, = O. 

Hence the general expression for the radii becomes 

The zenithal orthomorphic projection is usually called the 
Stereographic. I t  is of great interest theoretically because it is 
common ground of three different groups of projections. We 
have just seen that it is a particular case of the conical ortho- 
morphic projection. I t  is also the most elegant and useful of 
the Perspective zenithal projections, the one which is easiest to 
draw, and from which the others may be obtained by transfor- 
mation. Finally it is a particular case of the group of projections, 
very interesting mathematically, but of no practical use, which 
are included under the general name Lagrat~ge's Circular Ortho- 
morphic projection. 

We shall defer the consideration of this projection until we 
treat it in its proper place among the perspective projections. 

We have seen in this and the preceding chapter how the 
zenithal and cylindrical projections are related to the conical. 
It will be convenient to make a small table showing the relation- 
ships. 

Table of Related P~~o/'ections. 

I .  Simple conic with Simple cyliildrical Zenithal equidistant 
one slantlartl parallel " plate carrde " 

2. Conical with two  " 1'1ate --- 
stantlartl parallels ~~arnIlCIogrammatique " 

3. Conical equal area Zenithal equal area 
with onc stantlnrtl 
parallel 

4. Col>ical cqual area Cylindt ical erlrral area -- 
with two standard 
parallels 

5. Conical orthomorphic Cylindrical orthomorphic Zenithal orthomorphic 
or Mercator's or Stereographic 
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Airy's zenithal projection " b y  balance of errors." 

We have seen that the expression 

4 
Y =  2R sin - 

2 

gives the zenithal equal area projection, in which the shapes of 
all areas, even very small ones, are distorted, and sacrificed to 
the preservation of areas ; while the expressiorl 

f: r = 2 R  tan-  
2 

gives the zenithal orthomorphic, in which the shapes of small 
areas are preserved, but are subject to great errors of scale. 

Sir George Airy conceived the idea of making a zenithal 
projectiotl which should be a kind of happy mean between these 
two extremes. 

In the first the scale along the radii is too small and the scale 
along the parallel circles too great in inverse proportion a t  any 
point. In the second the scales along the radius and the parallel 
circle at any point are the same, but they are too large every- 
where except at  the centre. 

Airy argued that the " total misrepresentation" of the map 
might be expressed by the sum of the squares of the errors of 
scale in the two directions taken for every point of the map ; 
and he determined the law of a projection which made this sum 
a minimum. 

The law evidently depends upon the extent of the spherical 
surface to be represented, for the larger the area to be shown on 
the map, the greater is the difficulty of representing the outlying 
portions without undue distortion, and the greater the sacrifice 
which has to be made in the representation of the central regions 
to allow some mitigation of the distortion at  the edges. 

By a rather complex theoretical investigation Airy deduced 
the following law : 

If p is the spherical radius of the portion of the sphere to be 
represented, then with the usual notation 

2R 
y =  - 

M {cot 4 C log sec 4 C + tan if: cot9 $/3 log sec #3}, 
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where the logarithms are common logarithms, and M is their 
modulus, whose reciprocal is 2'30259. 

We have seen that the projection is, by intention, neither 
orthomorphic nor equal area, being designed as some sort of a 
mean between the two. 

It  is difficult to give an idea of the numerical properties of 
this projection in a small compass, as they vary with the radius 
adopted for the boundary. The only example of the projection 
to be found in Atlases is drawn for the spherical radius I 134'~ 
with centre in Lat. 233' North and Long. 15" East. This 
includes nearly the whole land surface of the globe. At go0 
from the centre of the map the radius is only about 8'1, greater 
than its true length; areas are exaggerated 2.2 times, and the 
ratio of the scale along the parallel circle to the scale along the 
radius is only 1-30. At 110' from the centre these quantities 
become 14 'lo ; 3-97 ; and 1.39 respectively. From this it is 
clear that Airy's projection " by balance of errors " is remarkably 
successful in representing enormously large areas without exces- 
sive distortion. 

It  is a little complicated to compute ; but the labour of 
computation is in any case only an insignificant fraction of the 
whole labour of producing a map, and need hardly be taken 
into account. When once the computation is done, the drawing 
is as easy as the drawing of any zenithal projection, and may be 
conducted either by transformation from the stereographic or by 
the aid of tables. See p. I 10. 

The projection may be recommended strongly for the repre- 
sentation of a hemisphere, but has not, to the knowledge of the 
author, been used for this purpose in any Atlas. 

The Ordnance Survey map of the United Kingdom on the 
scale of 10 miles to the inch is constructed on this projection, 
but the whole area represented is too small to make a fair 
example of its remarkable merits. 



CHAPTER V 

ZENITHAL PROJECTIONS, CONTINUED 

Perspective projections. 

WE have now to consider a class of zenithal projections 
which, in a sense, stand by themselves, because they include 
all but one or two of the map projections which are projections 
in the strict geometrical sense of the word, made by projecting 
a portion of the sphere upon a plane by straight rays proceeding 
from a point, the centre of projection. The image formed on 
the plate of a "pin-hole" camera is an excellent example of 
a perspective projection. 

The properties of perspective projections naturally depend 
upon the position of the centre of projection. 

Imagine a diameter of the sphere, and a tangent plane to 
the sphere drawn at  one extremity. And let us consider briefly 
the projections which can be made from different centres of 
projection lying upon the diameter. 

I t  is evident that all such perspective projections are 
zenithal or azimuthal, that is to say, that any set of great 
circles of the sphere radiating from the point of contact of the 
plane and the sphere, the centre of the map, project into radial 
straight lines making the same angles with one another as do 
the great circles. And small circles of the sphere, described 
about the point of contact, project into parallel circles described 
about the centre of the map. 

I .  If  we project from the centre of the sphere we have the 
Gnomonic projection. 

11. I f  we project from the opposite end of the diameter we 
have the Stereographic projection. 
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111. If we project from a point on the diameter produced, 
outside the sphere on the side opposite to the tangent plane, 
we have a series of projections comprised in the general name 
of Clarke's Minimum Error Perspective projection. In the 
useful cases the centre of projection lies a t  a distance from the 
centre of the sphere between 1-65 and 1-35 times the radius of 
the sphere. 

IV. If we choose the particular case of the last in which 
the distance is 1 - 3 6 7  radii we have Sir Henry James' projection. 

V. If we choose the particular case in which the distance is 
I 

I + -, or 1-71 radii, we have La Hire's projection. 
2/2 

Fig. 5. 

VI. Finally, if we take the centre of projection at infinity, or 
project by straight lines perpendicular to the tangent plane, we 
have the orthographic projection. 

The gnomonic projection. 

If r be the angular distance of any point on the sphere from 
the point which is to be at the centre of the map, it is clear that 
the linear distance from the centre of the projected point is 
given by 

r =  Rtan  5: 
As in all zenithal projections, the true bearings from the 

centre are preserved in the projection. But the distances from 
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the centres are very much distorted, since tan 3 increases much 
more rapidly than C. 

For example if 3= 4s0, r = R, whereas the true length on the 
7r sphere of an arc of 45" is - R = o'785R. 
4 

As the distance from the centre increases, the scale along 
the radii becomes rapidly greater, and as C approaches go0 it 
increases without limit, as is evident from the fact that 

tan go0 = oo , 

or geometrically, from the fact that when 3= go0 the projecting 
rays are parallel to the plane which they are required to cut. 

The scale along the parallel circles is also too great except 
very close to the centre. For C=4s0 the circumference of the 
parallel circle is 27rR ; while the circumference of the cor- 
responding small circle upon the sphere is 27rR/2/2. And as 
C increases the error becomes rapidly greater. 

It  follows that all distances, areas, and shapes are represented 
very badly on the gnomonic projection, which would be quite 
useless if it had not one very valuable property-that afzy great 
circle on the sphere is represented by a straight line upon the 
map. 

The proof of this proposition is extremely simple. The plane 
of any great circle upon the sphere passes through the centre of 
the sphere. Hence the rays which project the great circle lie in 
one plane, and the gnomonic projection of the great circle upon 
any plane is a straight line. 

The determination of the great circle course from point to 
point is an important problem in navigation. On a gnomonic 
chart the great circle course is the straight line joining the two 
points, and it would appear at first sight that such charts would 
be of great use to navigators. The United States Hydro- 
graphical Department has published a few charts upon this 
projection, but they do not seem to have come into general 
use. The reason is probably this, that the theoretical advantages 
of such charts are discounted in practice by the following facts : 
that great circle courses are required for very long voyages, 
whereas the distortion of the gnomonic chart is so great that it 
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is not possible to represent anything like a hemisphere upon 
it with advantage: that strict great circle courses are often 
impracticable, owing to their taking the ship too far north or 
south; for example, the actual course from New York to 
Queenstown has to follow a parallel for some distance to avoid 
the regions of icebergs, and then turns on to the great circle : 
and finally, that the great circle courses along the principal 
routes are well known and laid down, or may be computed very 
readily with tables such as Lecky's. 

Hence charts upon the gnomonic projection are very little 
used, and maps on it are hardly ever found in Atlases. 

Projection of the sphere on the circumscribed cube. 

The particular case of the gnomonic projection of the whole 
sphere upon the enveloping cube has some points of interest. 
If we regard a map of the world as, in the first place, a guide 
to getting about the world by the shortest route, then all the 
projections usually found in Atlases are quite inadequate. There 
is not one which will give with any facility the answer to such 
a question as: What course will a ship take from the Panama 
Canal to Yokohama ? or, In what direction would an aviator 
start from London, to go straight to Sydney? 

Such questions can be solved very readily by the gnomonic 
projection on the cube. (See Fig. g, p. 45.) 

Consider first the case in which the cube touches the sphere 
at the poles. 

The construction of the two polar sides is very easy. The 
parallels of latitude are circles, with radii R cot (latitude) ; and 
the meridians are equally spaced straight lines radiating from 
the poles. 

Consider next the equatorial sides of the cube. The equator 
is a straight line bisecting these four sides. The meridians are 
straight lines perpendicular to the equator, and distant from the 
central meridian R tan (diff. of long.). The parallels are ellipses. 
A parallel of latitude #I cuts a meridian distant AL from the 
central meridian at a point whose distance from the equator is 
R tan #I sec A/,. Hence it is very simple to construct the points 
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where the parallels intersect the meridians, and to draw the cor- 
responding curves through them. 

Suppose next that the cube does not touch the sphere at 
the poles, but that its points of contact have been chosen to 

Fig. 6 .  

0 

O M = R  
PM = R 

suit the requirements of the cartographer, with a view to 
arranging the land surfaces most conveniently upon the sides 
of the cube. We must obtain a few elementary properties of 
the projection. 

M 

tonAL 
tan @set A L  

Construction of a great circle. 

The fundamental problem is to draw the great circle joining 
any two points. If they are on the same face of the cube, the 
great circle is of course the straight line joining them. 

This great circle may be continued on an adjacent face very 
simply. Suppose two contiguous faces laid out flat, and let L ,  
M, N be the middle points of the three consecutive parallel 
edges. (We should note that for the purposes of construction 
the faces need not be considered as limited by the edges of the 
cube, but may be produced indefinitely. But to make this clear, 
we shall show dotted those lines which are drawn upon such 
extensions of the faces. See figure on following page.) 

Let A B  be a great circle on one face. If BC is its continua- 
tion on an adjacent face, we find C from the consideration that, 
by symmetry, C must be as much above N as A is below L. 



ZENITHAL PROJECTIOfVS 43 

Hence we have the rule for joining two points P ,  Q on 
adjacent faces: Find by trial a point S on the common edge, 
such that the lines SP, S Q  make equal intercepts respectively 
above and below the middle points of the adjacent parallel 
edges. This is easily done by trial ; but it does not appear 
that there is any direct construction that will give the point 
S in a simple way. 

Fig. 7 .  

If the points P and Q are on opposite faces the solution is 
still more simple. Find the point P' opposite P, or Q' opposite 
Q, and join P'Q or Q'P. This gives part of the required great 
circle, which may be continued round the cube in the way just 
explained *. 
The oblique cube. 

We are now in the position to deal with the case of the cube 
which does not touch at the poles. 

Let the centre C of one face be in latitude +, and let the 
meridian through C be drawn parallel to sides of the square. 
The equator LM is perpendicular to this meridian, at distance 
R tan +, and the poles N, S are the same distance above or 
below the centres of their faces. 

The equator may be continued round the other faces by 
* A good discussion of the geometry of this projection will be found in a paper by 

Professor Turner, Monthly Nofires of the Royal Astronovzical Society, Vol. LXX, p. 204. 
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the rule given above; it is KLMNO in the figure. K L  and 
M N  pass through the centres of their faces. The meridians 
which cut KL and MN are perpendicular to the equator, and 
may be constructed as in the normal case already considered ; 
they may then be continued across the adjacent faces, to pass 
through N and S. The places where the meridians cut L M  
and NO may be found from the formula: 

distance from centre of LM or NO = R tan AL sec +. 
And these points may be joined to the poles by the rules given 
above. 

Thus all the meridians are constructed. 

Fig. 8. 

The parallels on the faces KL and M N  may be constructed 
as in the normal case, or traced from it. 

The parallels on the other faces are somewhat more trouble- 
some. 

From C draw a perpendicular CH to any meridian, and let 
8 = tan-' CWR. 

Then the latitude of H is tan-' (cos 6'. DHIR). 
Call this +,. 
The distance of any parallel of latitude + from H is then 

R tan (+ - +,) sec 8, as before. 



F$. 9. Projection of the sphere on the 
circumscribed cube. 

The figure shows the great circle courses 

London to Bombay. 
London to Sydney. 
Panama Canal to Yokohama. 

Snl. /or madim# G-l C i d  Dufw.. . 
1A.n 0 d m h  of/are ./rr& ' 011 p#rpr.diml 

G m t  Cad+ 
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Thus the points where the parallels cut any meridian can be 
calculated. 

If great accuracy is not desired, they can be constructed by 
taking a tracing of the projection on a normal face, or on KL, 
which is similar ; and placing it with centre on C and meridians 
parallel to HD. Read off the latitude of H. Take out the 
differences of latitude between H and the desired parallels ; 
and set them off by estimation from the tracing. 

The process is tedious to describe. With a little familiarity 
it becomes quite easy in practice. 

If desired, the meridian through C may be made oblique. 
The construction then proceeds in a way similar to the above, 
but is more tedious. 

Measurement of the distance on a great circle. 

The method is obvious from what immediately precedes. 
The portion on each face must be measured separately. 

From the centre C of any face 
draw CH perpendicular to the great 
circle, and let 8 = tan-' CWR, as be- 
fore. Then ' 

U V =  U H +  H V  
= tan-' (cos 8. UWR)  
+ tan-' (cos 8. VH/R). 

Professor Turner, in the paper re- 
ferred to above, has described a kind 

Fig. ro. 
of protractor by means of which these 
distances are readily computed. 

Or they may be read off with ease from a tracing of a care- 
fully constructed normal projection, as above. 

The Stereographic projection. 

I t  is evident from the figure (p. 39) that the radii in the 
stereographic projection are given by the formula 

r = 2 R  tan at. 
We shall prove in a subsequent chapter that the projection 

is orthomorphic. (See p. 100.) 
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The scale along the radii is everywhere too large, but it 
increases very much more slowly than in the case of the 
gnomonic projection, and at least a hemisphere can be repre- 
sented ~vithout extraordinary distortion. For example, the 
radius of the parallel circle bounding a hemisphere is evidently 
2R, while the true distance is ~ T R  = 1'57R. 

Similarly, the scale along the parallel circles is everywhere 
too great, but it does not increase violently with distance from 
the centre. For example, the length of the circumference 
bounding the representation of a hemisphere is evidently ~ T R ,  
while its true length is 27rR. 

It  follows that the areas at a distance from the centre are 
considerably exaggerated, but not out of all proportion, as is 
the case with the gnomonic projection. 

With regard to the representation of shape: since the pro- 
jection is orthomorphic, very small areas are represented of 
their true shape. But since the meridians are curved, being 
circles, the shape of large areas is not well preserved. 

The great merit of the stereographic projection is that it is 
easy to construct geometrically. The meridians and parallels 
are all circles, and it is easy for example to draw the stereo- 
graphic projection of a hemisphere upon a small scale. When, 
however, we require maps upon a larger scale, representing 
a smaller portion of the Earth, the advantages of the geometrical 
construction disappear; it wants an impossibly large sheet for 
its construction. In practice, therefore, it offers no advantages 
over, let us say, the conical orthomorphic projection, for Atlas 
maps of a large, but not excessively large country, and its use 
appears to be decreasing. 

Clarke's minimum error perspective projection. 

Sir George Airy's principle of making the "total misrepre- 
sentation " a mini~num has been applied to the perspective 
projections by Colonel A. R. Clarke, K.E. (Airy's projection 
is not perspective.) 

It  is easily seen that if a perspective projection be made 
from an external point, whose distance from the centre of the 
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sphere is kR, R being the radius of the sphere, then the radii 
of the projection upon the tangent plane are given by 

sin C 
Y = R ( I  +h) 

h + cos 5' 
The value to be chosen for k naturally varies with the extent 

of the map for which the total misrepresentation is to be a 
minimum. I t  does not seem possible to obtain an expression 
from which /z can be calculated directly for any given spherical 
radius 6 which is to be the bounding radius of the area to be 
projected. The determination of h has to be made by a process 
of trial and error. Colonel Clarke has shown that for a map of 
Africa or South America, which can be included in a small circle 
of the sphere of radius 40°, h = 1.625. For a map of Asia, with 
radius 54O, h = I -6 I ; for the hemisphere, h = 1.47 ; and for the 
radius I I 3i0, k = 1.367. 

Two specimens of these maps, on very small scales, are given 
in Colonel Clarke's article on Mathematical Geography in  the 
Encyclofaedin Britannicn. The projection of the hemisphere 
( h =  1-47) is decidedly better than the Stereographic as a pro- 
jection of generally good qualities; but it has not, to the 
knowledge of the author, been used it1 Atlases. 

The projections are easy to compute, when once the value of 
A has been decided, and they can be drawn either by trans- 
formation from the Stereographic, or by means of the table of 
azimuths. (See p. I 10.) 

Sir Henry  James'  projection. 

This is simply Clarke's projection for the special case 

f l  = I I 3i0, h = 1.367, 

It has been drawn, so far as is known to the author, for one 
case only. The centre of the map is taken as the point where 
the meridian 15" East of Greenwich cuts the Northern Tropic. 
The South Pole is then on the circumference of the map, and 
the central meridian extends upwards across the North Pole, and 
47' beyond. The reason for the choice of these coordinates 
appears to be that nearly the whole of the land surface of the 
world is then included within the circular boundary of the map. 
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An example of it may be seen in Philip's Systematic Atlas, 
plate 7. On the same plate is a map of the same area drawn on 
Airy's projection by Balance of Errors. On the small scale 
upon which they are drawn the two maps look exceedingly 
similar. A rlumerical examination shows, however, that Sir 
Henry James' projection represents radial distances slightly 
better, areas very much better, and shapes decidedly worse, than 
does Airy's projectioi~. Both are, however, better than the 
stereographic projection in all respects, even the latter of the three 
just mentioned, the representation of shapes. For though the 
stereographic is truly orthomorphic, that is, represents small 
areas of their true shape, yet its rapidly increasing exaggeration 
of areas, more than twice that of the other two at a distance go0 
from the centre, makes its representation of large configurations 
decidedly inferior. 

Both Airy's and James' projections are based on the principle 
of making the sum of the squares of the errors of scale in two 
directions, taken all over the map, a minimum, and the results, 
for the particular case of spherical radius I 13+', look so very 
much alike that the distinction between them is at first sight not 
always obvious. It may however be stated concisely as follows : 
Airy's projection is the solution of the problem, to construct 
a zenithal projection in which tlie total misrepresentation shall 
be a minimum ; James' projection results from the solution of 
a slightly more restricted problem-the projection must be of 
the spccial class of zenithal projections which are perspective, 
true geometrical projections. 

I t  is hardly going too far to say that Clarke's Minimum 
Error perspective projection, of which James' is a particular case, 
is the only true geometrical projection which is really good for 
the representation of a hemisphere or larger portion of the sphere. 

The orthographic projection. 

The orthographic is the ultimate case of perspective pro- 
jection, where the centre of projection is removed to infinity, 
whence the projecting rays become parallel, and all perpendicular 
to tlie tangetit plane upon which the projection is supposed 
made. 



A s  a map projection for geographical purposes the ortho- 
graphic has no merits whatever, and will not be considered 
further in this portion of the book. I t  has however considerable 
interest to  astronomers. Our world as seen from the great 
distances of the heavenly bodies appears orthographically pro- 
jected ; and maps of the hemisphere visible from a given direction 
a t  a given instant have been found very useful in studying the 
complex circumstances connected with such phenomena as the 
Transit of Venus across the disc of the Sun. For an admirable 
use of such diagrams reference may be made to the work of the 
late R. A. Proctor : The U~riz~erse a d  the Coming Tm?tsits. 



CHAPTER VI  

T H E  M O D I F I E D  CONICAL A N D  CONVENTIONAL 
PROJECTIONS 

THE deficiencies of the simple conic projection in the repre- 
sentation of areas have led to an extensive use of the so-called 
modified conical projection of Bonne, which is not in reality 
a conical projection at all, since the meridians are not represented 
by straight lines, even in the normal projection. The Sanson- 
Flamsteed projection is a particular case of Bonne's. 

Another modification of the conical projection, the polyconic, 
has resulted from the circumstance that it is convenient, if it is 
possible, to compute once for all a set of tables which will enable 
a draughtsman to construct at once, without any preliminary 
calculation, a projection for any desired map. The Polyconic 
Projection possesses this advantage, and it is in consequence 
very largely used in some surveys, notably the United States 
Coast and Geodetic Survey. The mechanical ease with which it 
relieves the draughtsman of all responsibility for the choice of 
projection is its chief title to consideration, for it possesses no 
particularly valuable property such as the equal area property of 
Bonne's projection. I t  has, moreover, the defect that the meridians 
do not cut the parallels at  right angles. 

To avoid this defect, the Rectangular Polyconic was devised, 
and has been used extensively in the maps of the Intelligence 
Department of the British War Office, now the Geographical 
Section of the General Staff. 

Neither the ordinary nor the rectangular polyconic is suitable 
for maps of a large area; and for small areas they are in- 
distinguishable. 

4-2 
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We may consider these successive modifications of the true 
conical projections as links between those projections which have 
some definite scientific value, and the projections generally called 
conventional which have no scientific interest, but possess the 
valuable properties of convenience and simplicity in use. 

The Projection by Rectangular Coordinates, adopted for all 
the maps of the Ordnance Survey of England (except some 
of the smaller scales) is a step further towards complete con- 
ventionality. 

And at the end of the series we have the purely conventional 
projections such as the globular, of some use for unimportant 
atlas maps, and the most easily drawn projection for a hemi- 
sphere, but of no other interest whatever. 

We will consider these briefly in order. 

Bonne's projection. 

The scale of the simple, conical projection is correct along 
all the meridians, and along one selected parallel. The scale 
along the other parallels is incorrect, and the error becomes 
large if the projection is used for a map having a considerable 
extension in latitude. Bonne's projection remedies this defect 
in the following way. 

The central meridian is drawn straight and divided truly; 
the parallels at their true distances apart are drawn as concentric 
circles; and the selected standard parallel is divided truly, all as 
in the simple conical projection. But the meridians are no 
longer formed by joining the vertex to the points of division of 
the standard parallel. Instead of this, all the parallels are 
divided truly, and the meridians are formed by drawing curves 
through the corresponding points on each parallel. The resulting 
curves are not simple, but since a series of points upon them is 
so easily constructed, they are not hard to draw. 

It  is easily shown, and is indeed obvious geometrically, that 
the projection is strictly equal area. This has given it its 
popularity. 

The scale along the parallels is correct everywhere, by 
construction. The scale along the meridians is not correct, 
as is obvious from the fact that the distances between the 
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parallels are correct, but the meridians do not cut the parallels 
at right angles. The scale along the meridians is consequently 
too great for all except the central meridian, and this defect 
becomes more and more pronounced as the difference of longitude 
from the central meridian increases, and the meridians become 
more and more inclined to the parallels. 

The considerable inclination of the meridians to the parallels 
away from the central meridian shows that the projection is very 
far from being orthomorphic. The same fact shows that it does 
not possess the more general quality of preserving general 
shapes fairly well in spite of the want of strict orthomorphism. 

I t  is easy to draw when the proper appliances are at hand 
for passing curves through a series of plotted points. 

I t  is clearly unsuitable for polar regions, as are all the conics, 
and the less its extension in longitude the better. 

It was used for the old general map of France, whence its 
continental name of "projection du dPpBt de la guerre." I t  is 
also used by many other European surveys, including the 
Ordnance Surveys of Scotland and Ireland; and it is very 
common in Atlases. 

Sanson-Flamsteed projection. 

This is the particular case of Bonne's where the equator is 
chosen for the standard parallel. Its properties are therefore 
the same as that of Bonne's, and there is no need to consider it 
separately. 

It is often used in Atlases for the general map of Africa, 
whose extent in latitude is divided nearly equally by the equator, 
and whose extent in longitude is not great. It is also used for 
a general map of Australia and Polynesia, for which it is not 
well suited, since the extent in  longitude is too great. 

Werner's projection. 

This is the particular case of Bonne's projection in which the 
standard parallel is at the pole, the cone then becoming the 
tangent plane at the pole. Any one meridian is chosen as the 
central meridian, and is a straight line truly divided. The 
parallels are divided truly, and the other meridians are curves, 
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as in Bonne. It  does not appear that the projection has any 
properties specially valuable; but it has been used in Schrader's 
Atlas de GPogmphie Historiqzre for a map of the Russian 
Empire. 

Polyconic projection. 

This projection owes its name to the fact that each parallel 
is constructed as if it were the chosen standard parallel for an 
ordinary simple conic projection. 

The central meridian is divided truly. The parallel of 
latitude + is a circle of radius rcot  +, whose centre lies on the 
central meridian, and which cuts it at  the proper point of 
division. Each parallel so constructed is divided truly ; and the 
meridians are formed by passing curves through the corresponding 
points on successive parallels, as in Bonne's projection. 

The parallels are not concentric circles, for the distance of 
the centre of each, measured along the central meridian, from 
the parallel of latitude +, is evidently r (cot + + + - +,) which 
decreases as r#~ increases. Hence the parallels diverge from one 
another on each side of the central meridian. This in itself 
would make the scale along the meridians wrong. The error is 
aggravated by the fact that the meridians do not cut the parallels 
at right angles. 

It is clear that the projection is far from being either equal 
area or orthomorphic, and it is therefore quite unsuitable for 
maps of large area, for which indeed it is never used. Its value 
lies in the fact that a general table can be calculated for the 
polyconic which depends only on the adopted values for the size 
and shape of the Earth. For the radius of each parallel depends 
only on its latitude, and not in the least upon the position of the 
centre or the extent of the map. The meridians are not divided 
truly, but all meridians at equal distances from the central 
meridian are divided similarly. The parallels are divided truly. 

It  follows from these properties that i f  we have a map 
divided into a number of sheets, each covering the same extent 
of longitude, adjoining sheets will fit exactly along their northern 
and southern boundaries, for the bounding parallels are of 
definite radii and truly divided ; and they will have a rolling fit 
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along the eastern and western boundaries, for meridians at equal 
distances from the centre are divided similarly but are curved in 
opposite directions. On maps of the usual size and scale of 
a topographical map, this curvature of the meridians is hardly 
noticeable, and thus it is very nearly true that any two adjacent 
sheets plotted separately on the polyconic projection, fit one 
another at their junctions. This is a valuable property for 
a topographical map. 

We have already remarked that the polyconic projection 
is not suitable for an atlas map. The sixth International Geo- 
graphical Congress (London I 895) recommended the polyconic 
projection for the one in a million map of the whole world 
whose production was then advocated. The International Map 
Comtnittee of 1909 finally adopted a slightly modified polyconic 
projection (see p. 56). 

For the topographical maps of a country this projection has 
great conveniences : 

( I )  Each sheet may be plotted independently, but without 
any special calculation, by the aid of tables, constructed once for 
all. Excellent tables for the special scales I / I ,ooo,ooo, I / a~o,ooo 
and 1/125,ooo are published by the British War Office as 
appendices to the official Text  Rook of Topographical Surveying. 
Specimens of these are given at the end of the book. The best 
general tables are those published by the United States Coast 
and Geodetic Survey. 

( 2 )  Adjacent sheets practically fit, as we have already 
remarked. 

Hut they do not really fit, ancl it would not be possible to 
malie a very large wall rnap by piecing together many such 
shects; nor to make a small scale map of the country by 
pl~otograpl~ically reducing such a pieced-together map. There 
are certain disadvantages, then, attached to the polyconic pro- 
jection when used for a topographical series ; and for a country 
not too large the projection by rectangular coordinates, on which 
the English Orclnancc Survey maps are made, is in this respect 
preferable (see pp. 59 and 66). The question of fit is really 
only of importance in combining original plates or transfers on 
stone and zinc. The printed sheets suffer so much deformation 
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by stretch of the paper that they can never be fitted together 
precisely in practice, even if they fit theoretically. 

The rectangular polyconic. 

This is also known as the War Office projection, because 
it has been very much used for the maps published by the 
Intelligence Department of the British War Office. 

The parallels are constructed as in the polyconic projection. 
But they are not all divided truly. A selected parallel is divided 
truly, and the meridians are curves through the points of division 
of this standard parallel, which cut the other parallels at right 
angles. 

The points of intersection of the meridians and parallels may 
be found by means of the tables published by the War Office*. 
They may also be constructed geometrically. 

The simple and the rectangular polyconics differ very much 
from one another if they are drawn for the. whole sphere, as 
in Germain, plate XIII .  But they are never used for anything 
larger than a single sheet of a topographical map, and for this 
they are indistinguishable one from the other. There is, then, 
no practical need to consider the difference between the two ; 
and as neither has any particular scientific interest, such as equal 
area or orthomorphic properties, we need not consider their 
theory any further. 

We shall give examples of the construction of these pro- 
jections in Chapter X. 

The projection for the International Map on the scale of 
I : 1,000,000. 

In general principle this projection is polyconic ; but some 
interesting modifications are introduced. 

The sheets cover four degrees of latitude and six of longitude 
(or in latitudes higher than 60" twelve degrees of longitude). 

The top and bottom parallels are constructed from tables, in 
the usual way (see below). They are divided truly. They are, 
of course, circles struck from centres lying on the central 
meridian, but not concentric. The meridians are straight lines 

On fhs Prq'cction of Maps, Major Leonard Darwin, R.E. 1890. 
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joining the corresponding points of the top and bottom parallels. 
Any sheet will now join exactly along the margins with its four 
neighbours. This is the fi-rst modification ; in the true polyconic 
projection the meridians (except the central) are curves. 

In the true polyconic projection the central meridian is 
divided truly by the parallels, and the other meridians are too 
long, by small amounts increasing with distance from the central 
meridian. In the projection for the International Map a _second 
modification is made, in bringing the parallels closer together by 
a small amount, so that the meridians two degrees on each side 
of the centre are made to be of their true length. The correction 
required to effect this is very slight, amounting to only 0.01 in. 
at the most; and the consequent gain is therefore almost too 
small to be measured on the sheet. But the idea is elegant, and 
will appeal to all interested in the subject. 

In the Resolutions of the International Map Committee, 
London, 1909, it is not laid down how the meridians are to be 
divided ; but it may be supposed that they are divided equally. 
Nor is it provided that in sheets covering twelve degrees of 
longitude, instead of six, the meridians of true length shall be 
four degrees, instead of two, on each side of the central 
meridian ; but this is no doubt intended. 

The tables annexed to the Resolutions of the Committee are 
extracted from "Tables for the projection of graticules for maps 
on the scale of I : ~,ooo,ooo ; prepared by the Geographical 
Section of the General Staff. London, Feb. 1910." But it 
should be noticed that the latter, though published immediately 
after the meeting of the International Committee, were not 
intended to include the above modifications. Thus the parallels 
for every degree arc constructed separately and the meridians 
are not reduced to straight lines equally divided. 

These tables provide for the construction of the parallels 
thus: Taking the point where the parallel cuts the central 
meridian as origin ; the central meridian as the axis of y ;  and 
a line at right angles to it as the axis of x :  the coordinates x , y  
are tabulated for the points of the parallel at  longitudes I", 2", 

and 3" from the central meridian. The y-coordinates are of 
course small. Thus seven points on each parallel are plotted, 
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and a smooth curve passed through them is the required circular 
parallel. 

If v is the radius of curvature of the spheroid at right angles 
to the meridian, + the latitude of the parallel, and AL the 
difference of longitude from the central meridian, 

x = v cot + sin (AL sin +), 

y = v cot + { I  - cos (AL sin +)I. 
[It may be noticed that it] the above War Office tables 

published Feb. 1910, the values of x have, by an oversight, been 
calculated from the erroneous formula 

x = v cot + tan (AL sin +). 

The resulting error in the tables is very small, and practically 
almost negligible. It  has unfortunately been reproduced in the 
International Map tables.] 

The complete tables for the construction of the whole of the 
International Map up to 60" latitude are given on two pages 
(see pp. I 14, I r 5) and no further computation is required for 
any sheet. This shows very clearly the practical advantages of 
the polyconic projection and its modifications. 

An interesting discussion of the numerical properties of the 
International Map projection is given by M. Ch. Lallemand 
in the Co7lzptes Rendus, Tome 153, p. 559. He finds that the 
maximum error of scale of a meridian is 111270, which corre- 
sponds to 0.35 mm. in the height, 0.44 m., of the sheet. The 
maximum error of scale of a parallel is 1/320o. And the 
greatest alteration of azimuth is six minutes of arc. 'These 
errors are much smaller than those occasioned by the expansion 
and contraction of the sheet by damp. 

T h e  plane table graticule, or field rectilinear projection. 

This is nothing more than an approximation to the previous 
polyconic projections, in which the points of intersection of the 
meridians and parallels are joined up, not by curves, but by 
straight lines. The reason for doing so is obvious. When the 
trigonometrical triangulation is finished the plane tabler has 
given him a list of the geographical coordinates, latitude and 
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longitude, of the triangulation stations and the intersected points. 
These he has to plot upon his plane table. The best way of 
doing this is to begin by constructing the " graticule " or network 
of meridians and parallels. The plane table sheet covers a very 
small area, generally less than a quarter of a degree square. 
Within this area the curvature of the meridians and parallels is 
extremely slight. And the graticule has to be plotted in camp, 
away from the facilities of the drawing office. Hence it is an 
obvious simplification to draw the parallels and meridians in 
sections of straight lines, instead of as continuous curves. And 
the difference is quite ir~appreciable on the plane table sheet. 

This projection has no properties of interest, except the all 
important one that it is usable in the field. 

Excellent tables for the construction on various scales are 
published by the Survey of India (Auxiliary Tables) and 
in the Text Book of Topog~wjhicnl Szwzzejlilzg (Close). An 
extract from these tables will be fouiid in Chapter X, with 
explanation of the method of use. 

Projection by rectangular coordinates. 

This is a step further towards the purely coi~ventional pro- 
jection. 

Let C be the centre of our map, of 
latitude #I,, longitude A,; and let 0 be 
any other point, of latitude $, longitude A. 

Draw the great circle OAF perpen- 
dicular to the meridian tlirough C, and 
let OM=x,  MZ=y.  M 

Then it is easy to prove that 

sin x = sin (X - X,) cos $ 
and 

cot (4, +j ' )  = cos (X - A,) cot +. L C If now, having computed by these 
Fig. I r .  

exprcssio~is the lengths of the arcs x 
and y, we plot them as r~ctn~zgz~ltrr roordi~~ntcs o t ~  n plnna, we 
have the projection by rectangular coordinates, or Cassini's 
projection. 
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This is the projection upon which Cassini made his great 
map of France. I t  was adopted for the one-inch map of 
England, and for the six-inch map of the United Kingdom ; 
and for several continental surveys. 

I t  is more conventional than the polyconic projection, and 
differs from it in the important respect that the separate sheets 
of the map are not computed independently by general tables, 
but all are computed with respect to the one chosen prime 
meridian and fixed centre C upon it. Hence the sheets of the 
map fit accurately together. 

The projection has no scientific interest, but it is very useful 
and suitable for a topographical series of a comparatively small 
country. 

Its principal defects are ( I )  that the scale north and south is 
exaggerated on each side of the central meridian. I t  should 
not be used for maps extending more than 200 miles from 
the central meridian ; (2) that the meridians away from the 
centre are not straight; and (3)  that as used in the British 
Ordnance Survey, the sheets are made rectangular; they are 
not bounded by meridians and parallels ; and the edges of 
the sheets are not i n  general north and south, but may be 
inclined as much as 4" to the meridians. This is a very fruitful 
cause of mistakes. 

We may take it as a general principle that survey sheets 
should always be bounded by meridians and parallels. 

Mollweide's homolographic projection. 

This projection has been used very frequently of late for 
small maps of the world. It  is equal area, and therefore suitable 
for distribution maps. It is neat in shape-an ellipse having the 
major axis twice the minor ; but the distortion near the extremities 
of the minor axis is necessarily extreme. 

Consider first the construction of a hemisphere on this 
projection. Take Y = 4 2 .  R where R is the Earth's radius. Then 
a circle with radius r has the same area as the hemisphere. 

Take a diameter of this circle to represent the half of the 
equator ; and divide it equally into say six parts, each representing 
30' of longitude. Draw ellipses through the poles and these 
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points on the equator, to represent meridians. By an elementary 

property of the ellipse, the areas of these "gores " are all equal. 
The parallels of latitude are straight lines parallel to the 

equator. The distance from the equator of a parallel of latitude 
C#J is Y sin 8, where 

T sin $I = 28 + sin 28. 
This equation cannot be solved directly, to find 8 where r#I is 

given; but by the reverse process it is easy to find r#I for any 
given value of 8 ;  and when this has been done for a sufficient 
number of cases, the values of 8 corresponding to any desired 
value of r#I can be interpolated. In this way the table on p. 121 

was constructed. 
Having drawn the circle, and the parallels of latitude by 

means of the table, we divide all the parallels into the same 
number of equal parts as the equator ; and curves drawn through 
the series of corresponding points give us the elliptical meridians. 
Hence the projection is quite easy to construct. And by ex- 
tending the parallels on each side, with the same equal divisions, 
we obtain the represelltation of as much as is desired of the 
other hemisphere. 

I t  is easy to show that the projection is equal area. For 
on our projection the area of a belt of the hemisphere between 
the equator and latitude r#I is easily seen to be 

Jr'sin 28 + f l .  8 
= R2 (sin 28 + 28) = rR2 sin +, 

which is the area of the corresponding belt of the hemisphere. 
Hence the belts between parallels are of their true areas. And 
we have already seen that the gores between meridians are also 
true in area. Hence the projection is equal area. 

On this projection the world is generally represented as an 
ellipse with the equator as major axis. But the frontispiece of 
the Catalogue of Maps published by the Topographical Section, 
General Staff (July 1908) is a beautiful example of a transverse 
Mollweitle*, with major axis the meridian 70" E.-I 10" W. The 
greater past of the British Empire falls within the region of not 
too great clistostion, and the relative areas of its parts are 
excellently shown. 

* Rcproducecl as the frontispiece of this hook l ~ y  permission of Colonel Close, R.E. 
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Aitoff's projection of the whole sphere. 

This is a somewhat new and interesting projection which 
resembles Mollweide's, but has some points of superiority. The 
method of construction is as follows : 

Take the zenithal equal area projection of a hemisphere, 
with zenith on the equator; and pass through the straight line 
representing the equator a plane making an angle 60" with the 
plane of the projection. Project the net of the zenithal pro- 
jection orthographically on this plane. We then have a projection 
of the hemisphere bounded by an ellipse of which the major 
axis is twice the minor. Now halve the scale in longitude: that 
is to say, number the meridian which was 10" from the central 
meridian as 20 ' ;  and so on. We thus obtain a representation 
of the whole sphere within the boundaries of the ellipse. 

The projection is evidently equal area, since we started with 
an equal area projection, and this property is not modified by 
the orthogonal projection on to the plane. And it has the 
advantage over Mollweide's that the angles of intersection of the 
meridians and parallels are not so greatly altered towards the 
eastern and western edges of the sheet. 

I t  can be constructed very readily when we have a table 
of the rectangular coordinates of the intersections for the zenithal 
projection, by plotting the x's unchanged and halving the y's. 

It  is clear that there is a whole class of projections of this 
kind that might be constructed. But it is only the equal area 
property that is preserved unaltered in the orthogonal projection 
on the plane, and only the 2 : I reduction that offers any special 
convenience. 

Breusing's projection. 

This is an attempt to obtain a mean between the advantages 
of the zenithal equal area and the zenithal orthomorphic pro- 
jections. The radii are the geometrical means between the radii 
of those two projections, or 

R = 2 dtan i r s i n  i t .  

This formula gives distances from the centre slightly greater 
than the true distances, but not so exaggerated as in the 



Fig. 12. Aitoff's Projection. 



orthomorphic. I t  is not much used, and is of no special interest. 
The radii for each roo are given in Table VIII,  p. 120. 

T h e  globular projection. 

This projection, often used in atlases for the World in Two 
Hemispheres, is very simple, but has no other merits. I t  is 
constructed as follows : The central meridian and the equator 
are two equal straight lines at right angles. The equator is 
divided into equal parts ; and the meridians are arcs of circles 
passing through these points of division, and the poles. 

The central meridian, and the circumference of the map, are 
similarly divided into equal parts ; and the parallels are arcs of 
circles passing through the points of division of the central 
meridian, and corresponding pairs of points on the circumference. 

Nell's modified globular projection. 

This is a kind of mean between the ordinary globular and 
the stereographic projection of the hemisphere. I t  is col~structed 
as follows : 

The meridians .and parallels are curves drawn midway 
between the meridians and parallels of the globular and the 
stereographic projection of the hemisphere. Thus the meridians 
intersect in the poles, at  opposite extremities of the diameter 
which forms the central meridian. The parallels of latitude 
intersect the bounding circle in those points in which it is divided 
equally both by the globular and the stereographic projection. 

I t  does not appear that the projection has any particular 
merit, and it is described here only because it is occasionally to 
be found in atlases. 



CHAPTER V I I  

PROJECTIONS I N  ACTUAL USE 

WE have already remarked that the projections which are 
the most often described in the elementary accounts of the 
subject are in general those which are the least frequently 
met with in actual use. In order to get some idea of the 
relative usefulness, or at  any rate, of the relative use of the 
various projections that we have studied, we will collect some 
statistics of the projections employed on the sheets of the 
principal topographical surveys of the world, and of the prin- 
cipal atlases in which attention has been paid to the choice 
of the projection. 

Projections employed on topographical maps. 

I t  is quite impossible to discover by measurement on the 
sheet what is the projection employed, since the irregular 
expansion of the paper much more than conceals the minute 
differences that there are between one projection and another 
in the small area covered by a single sheet of a topographical 
map. 

I am indebted to Colonel C. E. Close, C.M.G., R.E., Director- 
General of the Ordnance Survey, for the information which 
forms the basis of the following list, and to Colonel Hedley, 
R.E., Chief of the Geographical Section of the General Staff, 
for some additions to it. 

Austria-Hungary . . . 1/75,ooo. Polyhedric. 
I /750,000. Old edition. Ronne. 

New edition. Albers' conical 
equal area. 

H. nr, P. 5 
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Belgium ... . . . I /2o,ooo and reductions. Bonne. 
Denmark ... . . . 1120,000. Old map. Bonne. 

1/4o,ooo. Jutland. A modified conical. 
All recent Staff maps simple conic with 

standard parallel 56" N. 
Egypt . .. . . . " Gauss' conformal." See Appendix. 
France ... . . . 1/8o,ooo and 1/2oo,ooo. Bonne. 

r /~oo,ooo. Polyhedric. 
' 1/50,000. New map. Polyconic. 

Germany ... . . . 1125,000 and reductions. Polyhedric. 
Italy . . . . . . I/ 100,000. * " Polycentric or natural " 

(? polyhedric). 
1/5oo,000. Bonne. 

Netherlands ... 1/25,00o. Bonne. 
Norway ... . . . I / I 00,000. * " Crescent or increasing 

conic" (?conic with 2 st. parallels). 
Russia ... . . . I / I 26,000. Bonne. 

I /420,00o. Conical orthomorphic. 
spain ... .. . 1150,ooo. Probably polyhedric. 

I/~OO,OOO. Bonne. 
Sweden ... . . . r/roo,ooo. See Norway. 
Switzerland ... 1/25,ooo and 1/50,000. Bonne. 
United Kingdom-Ordnance Survey 
England ... ... 112,500, 1/1o,560, 1/63,360, 1/126,720, 

1/253+++0. Cassini. 

I /633,6m. Airy's projection by Balance 
of Errors. 

Scotland and Ireland 1163,360 and smaller. Bonne. 
United Kingdom-Geographical Section of the General Staff. 

Early maps : Rectangular polyconic. 
Recent maps : Polyconic and Inter- 

national. 
United States . . . 1162,500. Polyconic. 

We notice that the projection of Bonne, or of the Ddpat 
de la Guerre, is very much used; but this must be considered 
rather as testimony to the great reputation of that department 
than as evidence of the suitability of the projection for the 

Official description : identification uncertain. 
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sheets of a topographical series. A single sheet on this pro- 
jection, plotted on its central meridian, is almost if not quite 
indistinguishable from the corresponding sheet of the poly- 
conic ; while if a number of sheets are plotted as one whole the 
inclination of the meridians to the parallels is a grave defect. 

The Service Gdographique de l'Armde, which bas succeeded 
to the survey duties of the Ddp8t de la Guerre, has recently 
abandoned Bonne's projection for the polyconic and its elegant 
modification the projection of the International Map. I t  seems 
prbbable that these will be generally employed in new'work to 
the exclusion of all others. 

Projections employed in Atlases. 

Until a few years ago it was rare to find on the margin 
of an Atlas map any statement of the projection on which it 
was constructed. Of recent years much more interest has been 
taken in the choice of the projection, and it is usual to find 
such a statement in the best French and German Atlases. We 
must regret that it is still uncommoil in the Atlases of British 
publishers. 

We will examine the following atlases, and see what projec- 
tions are used in them for the principal continental maps : 

I .  E. Debes. Neuer Handatlas. Leipzig, 1897. 
2. C. Diercke. Schul-Atlas fiir hohere Lehranstalten. 

Braunschweig, Westermann, I 908. 
3. G. Philip. Systematic Atlas. Edited by Ravenstein. 

London, I 894. 
4. E. Schrader. Atlas de Gdographie Moderne. Hachette, 

Paris, 1896. 
5. E. Schrader. Atlas de Gdographie Historique. 

Hachette, Paris, I 896. 
6. E. Stanford. London Atlas of Universal Geography. 

London, I 904. 
7. Stieler's Hand-Atlas. Gotha, Justus Perthes, 1905. 
8. Sydow-LYagner's Methodischer Schul-Atlas. Gotha, 

Justus Perthes, 1908. 
g. Vidal-Lablache. Paris, Armand Colin, I 894. 
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10. St  Martin-Schrader. Atlas Universe1 de GCographie. 
Paris, Hachette, I 877-191 2. 

In numbers I ,  2, 3, 4, 5 ,  and 8 the name of the projection 
is given on the margin or in the introduction; in numbers 
6, 7, 9, and 10 this is not done, and the identifications given 
below are subject to a little uncertainty in some cases. 

In these atlases the following projections are used : 

EUROPE. Debes 
Diercke 
Philip 
Schrader Mod. 
Schrader Hist. 
Stanford 
Stieler 
Sydow- Wagner 
V.-Lablache 
St  Martin 

Debes 
Diercke 
Philip 
Schrader Mod. 
Schrader H ist. 
Stanford 
Stieler 
Sydow- Wagner 
V.-Lablache 
S t  Martin 

Debes 
Diercke 
Philip 
Schrader Mod. 
Stanford 
Stieler 
Sydow- Wagner 
V.-Lablache 
St Martin 

Conical orthomorphic 
Zenithal equal area 
Bonne 
Bonne 
Simple conic 
Simple conic 
Bonne 
Bonne 
Bonne 
Bonne 

Zenithal equidistant 
Zenithal equal area 
Zenithal equal area 
Zenithal equidistant 
Werner 
Bonne 
Bon ne 
Bonne 
Bonne 
Zenithal equidistant 

Zenithal equidistant 
Zenithal equal area 
Sanson-Flamsteed 
Sanson-Flamsteed 
Sanson-Flamsteed 
Zenithal equidistant 
Sanson-Flamsteed 
Sanson-Flamsteed 
Zenithal equidistant 
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NORTH AMERICA. Debes 
Diercke 
Philip 
Schrader Mod. 
Stanford 
Stieler 
Sydow-Wagner 
V.-Lablache 
S t  Martin 

SOUTH AMERICA. Debes 
Diercke 
Philip 
Schrader Mod. 
Stanford 
Stieler 
Sydow- Wagner 
V.-Lablache 
S t  Martin 

Debes 
Philip 
Schrader Mod. 
V.-Lablache 
St Martin 

Diercke 
Schrader Mod. 
Stieler 
V.-Lablache 

Breusing's Zenithal 
Zenithal equal area 
Zenithal equal area 
Zenithal equidistant 
Simple conic 
Bonne 
Ronne 
Bonne 
Zenithal equidistant 

Breusing's Zenithal 
Bonne 
Sanson-Flamsteed 
Sanson-Flamsteed 
Sanson-Flamsteed 
Sanson-Flamsteed 
Bonne 
Bonne 
Zenithal equidistant 

Conical orthomorphic 
Sanson-Flamsteed 
Bonne 
Bonne 
Bonne 

Zenithal equal area 
Mercator 
Zenithal equidistant 
Sanson-Flamsteed 

Sydow- Wagner Sanson-Flamsteed 
S t  Martin Mercator 

POLAR REGIONS. All use polar zenithal equidistant or zenithal 
equal area except S t  Martin, who uses what seems to 
be a slightly oblique zenithal equidistant. 

THE WORLD. Mercator, Globular, and Mollweide are used 
by nearly all the atlases. Debes has its hemisphere 
maps on the zenithal equal area, instead of the familiar 
Globular. Philip's Systematic Atlas has small examples of 
James' and Airy's projections of more than the hemisphere ; 
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and Schrader's several atlases make.  considerable use 
of Aitoff's projection, which is .uncommon, and of the 
Orthographic. 

I t  will be seen from the above lists that the number of 
projections in common use is quite small, and that many of 
those which are most frequently described:-conical equal 
area, stereographic, or orthographic are scarcely found in use 
at all. The author has not come across an example of the 
simple conical equal area, but it is stated by Bludau that 
there is an example of it in Liiddecke's' Deutsche Schul- 
Atlas in the United States map. Albers' conical equal area 
projection with two standard parallels does not seem to have 
been used in any atlas, but is adopted in the Austrian 
General Staff map of Central Europe, and in a wall map of 
Russia published by the Russian Geographical Society in 
Russian. 

The conic with two standard parallels is found in Debes' 
map of Central Europe ; two examples of the equatorial 
cylindrical orthomorphic in the same, Russia and Central 
America ; and an oblique cylindrical orthomorphic, S.E. Asia, 
and an oblique zenithal orthomorphic or stereographic, for 
Equatorial Africa, are also found in Debes. 

T h e  identification of projections. 

From the foregoing chapters it is evident that we car1 
construct a key which will provide for the identification of 
the more common projections, whenever they are shown of 
sufficient extent. I t  is usually possible to identify the projec- 
tions of Atlas maps; and generally difficult to say with any 
certainty what is the projection on which a topographical sheet 
is drawn, because in the latter case the precise measurement 
required is forbidden by the stretch of the paper. 

The following rules will serve as a guide: 

I. If the parallels arc concentric circles, and 
(0 )  the meridians are curved, the projection is Honne's ; 
( b )  the meridians are straight lines, it is one of the 

conical. 



PROJECTIONS IN ACTUAL USE 

(A) parallels equidistant-Simple conic ; or 
(B) conic with two standard parallels ; not easy to 

distinguish from (A), but very uncommon ; 

(C) distance between parallels decreasing towards the 
pole, and increasing away from it-Conical equal 
area ; 

(D) distance between the parallels increasing towards 
the pole, and decreasing away from it-Conical 
orthomorphic. 

2. If the parallels are straight lines, and 

(c )  the meridians are curved, and 
(E) the parallels are equidistant-Sanson-Flamsteed ; 
(F) the parallels are closer towards the poles-illoll- 

weide. 
(4 the meridians are straight lines, and 

(G) the parallels are equidistant-Si m ple cylindrical, 
or " plate-carre " ; 

(H) the parallels are closer towards the poles-Cylin- 
drical equal area ; 

(K) the parallels are wider apart towards the poles- 
Mercator. 

3. If the meridians are straight lines, and the parallels are 
curved-Gnomonic. 

4. If both meridians and parallels are curved, and 
(L) they cut one another at right angles-Zenithal 

orthomorphic, probably the Stereographic ; or per- 
haps, on a topographical sheet, the Rectangular 
polyconic ; 

( M )  they do not cut one another at right angles, then 
it is not always possible to distinguish at sight 
between the zenithal equidistant, zenithal equal 
area, and sotnc of the more uncolnmon projections 
such as Airy's or Clarl<e's. If it is an atlas nlap 
of a continent, it is most likely a zenithal, and by 
measuring the distances between parallels along 
the straight central meridian one may usually dis- 
tillguish between the zenithal equidistant-central 
meridian divided truly; the zenithal equal area- 
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divisions decreasing away from the centre ; and 
the zenithal orthomorphic-divisions increasing 
away from the centre. If it is the map of a hemi- 
sphere or more, then it may possibly be Airy's or 
Clarke's. T o  identify these with certainty it is 
necessary to make measures and compare with 
the formulae for the most likely cases. This is 
interesting but tedious, and shrinking of the paper 
makes the result uncertain. 

It  will be understood that this key is not infallible, because 
it takes no account of the possibility of meeting occasionally 
such unusual projections as the oblique cylindrical ortho- 
morphic. It  will, however, serve in the majority of cases to 
identify the projections that are in use. 

The choice of a projection. 

I t  is difficult to lay down rules for the choice of projections 
for different purposes, since the conditions which must govern 
the choice are so exceedingly varied. We can do no more than 
indicate some of the points which may be kept in view. 

Within the limits of a single topographical sheet there is 
little difference between the merits of several projections. The 
choice is guided by considerations of convenience and economy 
of time in the drawing office. Each sheet should be bounded 
by meridians and parallels and should fit its neighbours along 
the edges. We can hardly do better than choose the polyconic, 
or its elegant modification, the projection of the International 
Map. 

In choosing the projection for an atlas map, we shall do well 
to remember that the conical projections have these incontest- 
able advantages : ( I )  the meridians are all straight lines, and 
the parallels concentric circles, so that the properties of the 
projection are the same all along the parallel ; it does not 
deteriorate as one gets away from the central meridian ; and 
at any point it is easy to measure with the protractor the 
apparent bearing of any ray. These advantages are not shared 
by any of the projections which have curved meridians. 

The conical projection with two standard parallels affords 
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wide opportunities for selecting the standard parallels to suit 
the map ; and when the whole of the sheet is north or south of 
the equator, it will usually be found that this, or the equal area 
projection with two standard parallels (Albers'), is hard to beat. 

If, however, the sheet crosses the equator the conical pro- 
jection becomes less suitable; and then we may find it better 
to adopt the zenithal equal area. Or, if the equator nearly 
bisects the sheet, then Sanson-Flamsteed gives good results, 
and is very easy to draw. 

For maps of a hemisphere the choice is [vide. Mollweide 
(for equal areas), Airy's projection by balance of errors, and 
Clarke's perspective projection with the appropriate distance of 
the centre of projection, are all excellent. These all represent 
shapes pretty well ; and a good representation of bearings, 
except from the centre, can hardly be expected on a map 
covering so large an area. 

For the whole world on a single sheet we have Mollweide, 
which is useful for distribution diagrams, but can scarcely be 
called a map;  and Aitoff's, which is not so easy to draw as 
Mollweide's, but is better in that its representation of the shape 
of countries far east and west of the central meridian is not so 
distorted, since the meridians and parallels are not so oblique to 
one another. The problem of showing the sphere on a single 
sheet is intractable. We have examined the considerable 
advantages of the cubical gnomonic projection ; and we may 
notice that it would not be difficult to re-draw on the zenithal 
equal area projection the six trapeziums of the sphere which 
correspolid to the six faces of the cube. These six sheets would 
have a rolling fit along their edges, and would make a useful 
map ; it has not been done, to the knowledge of the writer. 

Finally, for a nautical chart, and for no other purpose what- 
ever, we should use Mercator's projection. 



CHAPTER V I I I  

T H E  SIMPLE MATHEMATICS O F  PROJECTIONS 

I N  the preceding chapters we have given a generalized, 
somewhat superficial, descriptive, but unmathematical treat- 
ment of the subject. W e  must now proceed to  the simple 
mathematical treatment of the theory of projections. 

A s  has been already stated, this book does not profess t o  
attack the subject from the mathematician's point of view. W e  
shall not attempt to  examine the general theory of Gauss, how 
far, and by  what means, a representation of form upon any 
surface whatever may be transformed into a similar representa- 
tion upon any other surface. T h e  mathematics of this most 
general case is difficult, and the results have no very obvious 
application to  map making. Neither shall we try to  show how 
the expressions for the more complicated projections have been, 
in the first instance, deduced from general theory. Tha t  has 
been done in an excellent way by Germain. Hut it is more 
interesting to  mathematicians than to map makers or map 
users. For the latter people, for whom this book is written, 
it is sufficient to show how the properties of a projection may 
be proved when its formula is given, and how it may be con- 
structed either graphically or numerically. 

The  general theory is harcl ; the theory for each particular 
case is easy. W e  shall confine ourselves to  the latter, and 
have therefore called this chapter The  Simple Mathematics of 
Projections. 
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Standard notation. 

In order to avoid continual repetition of definitions, we shall 
find it convenient to adopt a uniform notation for the various 
quantities which enter into the expressions. 

We shall suppose that 

R = the radius of the Earth, supposed spherical (or the 
equatorial radius, if we are taking account of obliquity), 
expressed in the scale units of the intended map. For 
example, if the map is to be on the scale of one in 
a million R = one millionth of the actual radius of the 
Earth ; - + = the geographical or astronomical latitude ; 

x = the complement of the latitude, or the co-latitude ; 

X = the longitude of a point on the Earth ; 

AX = the difference of longitude between two points or the angle 
between the meridians passing through those points. 

Conical projections. 

In 7tormnl conical projections, that is to say, in conical 
projections where the meridians are represented by straight 
lines converging to the pole, and the parallels of latitude by 
concentric circles, 

Y =  the radius of a circular parallel of latitude +. 
If the projection has one standard parallel, that is, one 

parallel which is shown its true length upon the map, 

Y,, = the radius, 

and +, = the latitude of that standard parallel, 

or xo = its co-latitude. 

If the projection has two standard parallels, 

5, Y? = the radii, 

+,, +,= the latitudes of the two standard parallels, 

or x,, x2 = their co-latitudes, 

8 = the angle between two radii representing meridians 
whose difference of longitude is AX, 
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n =  the constant of the cone, 4 the angle a t  the 
pole of the projection which corresponds to a 
difference. of longitude of 360" or 27r;  so that 
e=h.Ax. 

As oblique conical projections are of no importance, it is 
not necessary to define the modifications in the above notation 
required to deal with them. 

Cylindrical projections. 

The normal cylindrical projection is a special case of the 
normal conical projection, when the pole of the projection is 
removed to infinity. The parallels then become straight lines; 
Y is infinite for all the parallels ; 8 and n are zero. Our formulae 
will be adapted to give, not Y, and Y, but yo- Y, the distance 
between any selected parallel and the standard parallel. 

We shall not require to deal with oblique cylindrical pro- 
jections. 

Zenithal projections. 

In these cases the pole of the projection becomes the centre 
of the map ; li is unity. 

We shall continue to use Y for the radius from the pole, but 
must remember that in the usual case, when the projection is 
oblique, the concentric circles of radius Y no longer represent 
parallels of latitude upon the Earth, but parallels of equal 
distance from the centre of the map. 
C= the angular distance of such a parallel from the centre. 

It will be noticed that angles are uniformly represented by 
small Greek letters; distances by small italic letters. 

Scale. 

In all our tables of radii, and in the drawings of the various 
projections, we shall work to the scale of one in a hundred 
million, or I : IO-~. I t  was intended that the metre should 
represent the ten-millionth part of the distance from Pole to 
Equator; and the relation between the Earth and the actual 
metre, as defined by the length of the platinum standard preserved 
in the Bureau International des Poids et Mesures at Shvres, is 
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nearly though not exactly what was intended. For our purposes 
it will be amply sufficient to assume that the distance from Pole 
to Equator of the Earth is actually I O , O O O , ~  metres; so that 
if we work on the scale of one to a hundred million this distance ... . - - 

Map P~qections 

ERRATUM 

The sentence at the top of page 76 is meaningless as it stands. Read : 

12 =the constant of the cone ; and n . 360° or n . z?r is the angle at the pole of the 
projection which correspollds to a difference of longitude of 360' or 2 r r ;  so that 
8 = r r .  Ah. 

Conical projections. 

In all conical projections the meridians are represented by 
straight lines radiating from a point, the pole of the projection, 
and the parallels by concentric circles described about the pole. 
Either one or two of these parallels are made of their true length, 
that is to say, are true to scale, or are equal in length to the 
length of the corresponding parallels on the Earth multiplied 
by the representative fraction of the map. 

Having given the radius and the length of the arc of parallel 
we obtain at once the angle which it subtends at the pole of the 
projection. I f  this angle is n. 27r, then n is what we have called 
the " constant of the cone." 

We shall find it convenient to examine projections syste- 
matically in the following order of properties : 

( a )  radius and length of the standard parallel, or parallels. 
(6) constant of the cone lz. 

( c )  radii of the other parallels. 
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nearly though not exactly what was intended. For our purposes 
it will be amply sufficient to assume that the distance from Pole 
to Equator of the Earth is actually ro,ooo,ooo metres; so that 
if we work on the scale of one to a hundred million this distance 
will be represented in our tables or on our drawings by 0 . 1  metre 
or r o o  millimetres. 

The corresponding value of R is 200/7r = 63-66 mm. ; and an 
arc of r C = R ~ / r 8 o =  I - I I I  mm. 

The ellipticity of the Earth. 

In our elementary computations and small scale drawings 
it will be unnecessary to take account of the ellipticity of the 
Earth. On the small scale of I : I O - ~  it is inappreciable. In 
any Atlas maps it can usually be neglected. In the larger 
Survey maps, which are usually upon some form of conical or 
polyconic projection, the ellipticity of the Earth is taken into 
account by the use of extensive geodetic tables such as those 
of the Indian Survey. We shall indicate the cases where these 
should be employed. In other cases dealt with in this book we 
shall assume that the ellipticity may be neglected. 

Conical projections. 

In all conical projections the meridians are represented by 
straight lines radiating from a point, the pole of the projection, 
and the parallels by concentric circles described about the pole. 
Either one or two of these pal-allels are made of their true length, 
that is to say, are true to scale, or are equal in length to the 
length of the corresponding parallels on the Earth multiplied 
by the representative fraction of the map. 

Having given the radius and the length of the arc of parallel 
we obtain at once the angle which it subtends at the pole of the 
projection. If  this angle is 7 z . 2 ~ ,  then 72 is what we have called 
the *' constant of the cone." 

We shall find it convenient to examine projections syste- 
matically in the following order of properties : 

(0) radius and length of the standard parallel, or parallels. 
( b )  constant of the cone n. 
(c) radii of the other parallels. 
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( d )  linear scale along the meridians and parallels. 
( e )  scale of areas. 

( f )  alteration of angles. 
(g) construction by rectangular coordinates. 

Simple conical projection with one standard parallel. 

The radius of the standard parallel is the length of the 
tangent drawn from a point in the polar axis produced to 
touch the sphere at the standard parallel ; that is 

~ ~ = l i c o t + ~  or = R t a n X o  ...............( I). 

Fig. 13. Simple Conic. 

The length of an element of the standard parallel is 

R cos +, . AX. 

Equating this to the alternative expression for its length, 
viz. Y,. 8 we have 

Rcos+, .AX=Rc~t t$~ .B,  

whence we have for the constant of the cone 

8 h = A-A - - sin t$, . . . . . . . . . . . . . . . . . . . . . . . .(2). 
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The lengths along the meridians are true. Hence the 
general expression for the radius is 

; r=Yo-R(+-+o) , 

= R {cot 4, - (+ - +,)I . . . . . . . . . . . . . . . . . .(3). 

In practice we draw the standard parallel, and lay off along 
the central meridian the true distances to the other parallels 
which can then be described. We divide the standard parallel 
truly; and join the points of division to the pole of the projection 
to obtain the other meridians. We can easily allow for the ellipti- 
city of the Earth by taking the true distances from geodetic tables. 

The only difficulty in constructing the projection graphically 
lies in the awkwardness of describing circles of very large radius. 
For this reason it is often preferable to calculate rectangular 
coordinates of the intersections and plot them. See p. 78. By 
construction the meridians are their true lengths. Hence the 
scale along them is true. The expression for the scale along 
the meridian, obtained by differentiating (3), is 

dr 

the sign is negative because Y increases as + decreases. 
The scale along any parallel of latitude 4 is 

vde 9- sin +, 
K cos +a!% = R?b; 

= {cos $, - (+ - +,) sin +,) sec $ . . . . . .(4). 

Since the scale along the meridians is unity, the scale of areas 
is the same as the scale along the parallels. 

Computation of an example. 

Suppose that we wish to make a simple conical projectioi~ 
for a small map of Europe, on the scale of I : ~oo,ooo,ooo. 

Take the parallel of 50" N. as the standard parallel. 
Its radius is R cot 50" = 53.4 min. (when K = 63.66). 
The constant of the cone n = sin 50" = 0.766. 
The radius of the parallel of 70" is 

53-4-zox 1.111 =3rV2 mm. 

and of the parallel 3j0 is 53*4+ 15 x 1-11 I =7o'1 mm. 
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nr The scale along the parallel 70" is 
R cos C$ 

= rSog7, and 

along the parallel 35" is 1.030 ; 

errors of 10 and 3 per cent. respectively. 
Take the meridian 20" E. of Greenwich as the central 

meridian, and let us compute the rectangular coordinates of 
the point 70" N. 65" E., in the Kara Sea, just north of the 
boundary between Europe and Asia, 

x = r sin e = Y sin (n -45') 

= 31'2 sin 34" 28' 

= 17.7 mm., 

y =  Y, - rcos  8 = 53-4 - 25-7 = 27.7 mm., 

and similarly any other point is computed. 
The distance of this point from the centre of the map is 

= 33.9 mm. 
X 

And its bearing from the central meridian is tan-'- = 32" 35'. 
Y 

Rut the true distance and bearing are 32'1 mm.; 30' of. Hence 
our projection gives us an error of about three per cent. in 
distance and 2a' in azimuth for the line from the centre to 
near the top right-hand corner of the map. 

We shall compute other projections for this same case of 
a map of Europe, and be able to compare their relative merits. 

A concise idea of the variation of scale along the parallel is 
given by the following small table for the three cases of standard 
parallels 22J0, 45') 674'. 

Scale along the parallel. Simple conic. 

Parallel # 
-- 

o0 
10 
20 

30 
40 
50 
60 
70 
80 

&= 22p 

1 -074 
I .023 
I'OOI 

I .OOg 
I '054 
1.1g1 
- 
- 
- 

#n=4s0 

- 
1.156 
I -08 I 
I .030 
1.004 
I .wq 
1 Q44 
1-165 
- 

#0=673" 
- 

- 
- 
- 
- 

I -080 
I '034 
I .CQ~ 
I '00 I 

1.043 
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Simple conical projection with two standard parallels and 
true meridians. 

Let AA', BB', be elements of the two standard parallels, of 
the same extent in longitude. We have to choose 0, the pole 
of the projection, in such a way that AA', BR' shall be arcs of 
circles concentric at 0 ; shall subtend the same angle a t  0 ; and 
shall be their true distances apart. 

We have 
OA - AA' - cos 4, 

Hence 
OA COS 41 

OA - O B = C O ~ + , - ~ ~ ~ + ~ ~  

Fig. 14. Conic with two Standard Parallels. 

and r1= OA = R (+,-4,) 
2 S l I1 - sin 

2 2 
which is the expression for the radius of the standard parallel. 

For the constant of the cone we have 

Y, .8=Rcos+, .Ax,  

whence e 2 
f l = - =  -- 6 + $ 1  6 - + 1  sin - 

Ah $2- $1 
sin - 

2 
. . . . . . . . . . 

2 (2) 
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The lengths along the meridians are true. Hence the 
general expression for the radius is 

= R - $1) cos $1 - (+ - 
cos - COS 4, 

= R  (42 - 4)  cos 41 - ($1 - 4) cos 42 
COS 4, - cos 

In practice we may draw a standard parallel by computa- 
tion from ( I )  and then construct the projection as the simple 
conic with one standard parallel was constructed, by laying off 
along the central meridian and one standard parallel the true 
distances taken from geodetic tables. 

The scale along the meridians, and along the standard 
parallels, is true. The scale along any other parallel of latitude 

Since the scale along the meridians is unity, the scale of 
areas is the same as the scale along the parallels. 

Choice of standard parallels. 

The foregoing formulae are sufficient to compute a projection 
when the two standard parallels are chosen on n prio~i  grounds. 
For example : suppose that we wish to compute a conical 
projection with two standard parallels for a inap of South 
Africa south of the Zambesi, that is to say, between the bounding 
parallels I 5" S. and 35" S. 

(a) We may say that we shall obtain a very fair result 
if we select 20' S. and 30" S. as our standard parallels ; and 
proceed to the computation upon this assumption. 

But we shall do better if, instead of selecting our parallels 
in this somewhat arbitrary manner, we choose them subject to 
more rigorous conditions. For example : 

(6) The absolute errors along the central and the extreme 
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parallels between a pair of meridians may be made equal. This 
is Euler's projection. 

(c) Or  the errors of scale on these parallels may be made 
the same. 

(d) Or the mean length of all the parallels may be made 
correct, while the errors on the extreme parallels, or the errors 
of scale on the extreme parallels, may be made equal. 

( e )  Or the maximum error of scale between the standard 
parallels may be made equal to  the error of scale on the limiting 
parallels. This is not quite the same as (h) ,  for the error of 
scale on the middle parallel is not the maximum error of scale, 
although near it. 

In  these four cases we have to  find the expression for the 
radii and the constant of the cone without any previous know- 
ledge of the parallels which will be of their true length, and our 
procedure will be somewhat different from that considered in the 
first place. This aspect of the problem is, however, the one 
which will generally occur in practice. And the conical pro- 
jection with two standard parallels is such a valuable projection, 
so admirably suited to the smaller scale survey maps, such as  
the one in a million series, and yet has been until recently so 
comparatively little used, that we will work the same example in 
all the different cases defined above, for purposes of comparison. 

Computation of five cases. 

Computation of a conical projection with two standard 
parallels, with limiting parallels I 5" and 35" south latitude (South 
Africa, south of the Zambesi). 

CASE I. Stmzdurd pnralLcls scl~ctcd arbitrarily at 20" $. 
ntzd 30" S. 

Our general expressions give us 

cos +, - COS +, 
72 = 

$2 - +l 

+, - +, is in circular measure. R is the radius of the Earth 
(supposed spherical) upon the scale of our map. Taking our 

6-2 
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scale, as in all the examples, as one in a hundred million, 
R = 63.66 mm. (see p. 77). 

Then 
cos zoo - cos 30" 0'9397 - 0'8660 

n =  - - 
10 x ~ / 1 8 0  0.1745 

R cos +, r, = = 141.6 mm. 
0.42 3 

This is the radius of the parallel 20". The radii of the 
others are immediately derived from it when we remember that 
on the scale of I : 1' = 1 . 1  I I I mm. 

Hence the radius of the circular parallel representing the 
pole, which will be found useful for comparison with the following 
examples, is 141.6 - 77.8 = 63.8 mm. 

CASE I I. Absolute errors along extreme and cerztral parallels 
equal (and of opposite sipt). 

The absolute error in the length of any parallel is evidently 

Let z be the radius, in millimetres, of the parallel representing 
the pole. 

Then 
r = [a + (co-latitude in degrees) x 1 . 1  I I I ]  mm. 

And our equations are 

= - [n (z+  65 x 1 - 1 1  I I )  - 63-66 cos 25'1, 
which reduce to 

2122+ 155.6n - I rgerg=o, 
2122 + I 33'3n - 109'85 = o, 

whence 
92 = 0.4 19, 

z  = 64-4 mm. 

CASE I I I. Erro~=r of  scale along extreme and cetttral parallels 
equal (and of opposite sign). 

rn The error of scale along any parallel is - 
R cos + I .  
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Hence we may evidently derive our equations for this case 
from those in the last by dividing the respective members by 
the appropriate values of R cos +, or multiplying by sec +. 
They then become 

n(z+75 x I ' I I I I ) S ~ C  15'-63-66 

=n(z+55  x 1'1111)sec35"-63.66 

=-[n(z+65 x 1'1111)sec 25'-63-66], 
which reduce to 

2'13972z+ 165'9672- 127'32=0, 

whence 

z = 63.1 mm. 

CASE IV. Mean length of all  the pa~~allels correct, n71d 
errors of scczle 012 the extrc7ne pnrrtllels eqzlczl. 

If the mean length of all the parallels is correct (and the 
lengths of all the meridians are true, by hypothesis), it follows 
that the total area of the map is true. The condition for this is 
evidently 

3 (r12 - 162) , B  = R2 (sin 4, - sin +,) AX, 

which for our example becomes 

The condition that the errors of scale along the extreme 
parallels are equal gives us, as in Case 111, 

which is so nearly equivalent to the preceding equation that it 
is evident that, without keeping more significant figures, it is 
impossible to solve for and 7z with any exactness. 

The explanation is obvious. For the map under considera- 
tion, the solution of any of the preceding cases so nearly satisfies 
also the condition that the mean length of all the parallels is 
correct, that the latter practically introduces no new factor. 
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CASE V. Maximzmz error of scab between the standard 
parallels eqz~nl to the error of scale of the extreme parallels, 

T h e  error of scale between the standard parallels is 

MY 
I - 

R cos 4 '  
nr 

which is most different from unity when is a maximum. 
R cos 4 

Differentiating with respect t o  $ and remembering that  

dr = - Rd4 ,  

we have as  the condition for maximum 

Y 2+(go0-4) x 1'1111 
cot 4 = - = R R 

Hence, as  in Case 111, if the maximum error of scale between 
the parallels is equated to  the error of scale on the extreme 
parallels, we have to  find n, z and 4 from the equations 

combined with the equation for cot 4 above. 
These equations are awkward to  solve, and we need not give 

the steps of the solution here. The  solution has been given by 
Colonel Close, Text Book of Topogvaphical Surveying, p. 108, with 
the following result (transformed into our notation): 

z = 62.9 mm., 

which is exceedingly close t o  the values we have found in 
Cases I to  111. 

A comparison of these five cases shows very clearly that, for 
a map between the parallels 1 5 "  and 35" the conical projection 
with two standard parallels is so nearly true over the whole 
extent of the map, that it is alrnost immaterial which conditions 
we select for precise fulfilment. 
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If we take 72 =Oe423, z=  63.1, the solution of Case 111, the 
error of scale on the limiting parallel of I 5" is 

0'423 (63-1 + 75 X 1.1 I I 1) - I = 0.008, 
63.66 cos I 5 ' 

or less than one per cent., which is about the ordinary error 
in a printed map caused by contraction or expansion of the 
paper. Hence the accuracy of this projection, in this case, is 
as great as can be obtained practically. 

For maps of greater extent in latitude, or further removed 
from the equator, the maximum errors of scale are naturally 
greater. In general it will be found sufficient to take the 
standard parallels about one-seventh of the whole extent in 
latitude from the bounding parallels. When the highest degree 
of refinement is required, it may be worth while to solve as 
in Case V. For an excellent discussion of such an example, 
reference may be made to a pamphlet by Colonel Close: 0 7 2  the 
Projection for thc Mnp of the British Isles on the scale I / I ,OOO,OOO. 

1903. 
As an example in higher latitudes we will compute the pro- 

jection for the map of Europe dread). done for the simple conic. 
The extent of latitude is roughly 70" to 35". Take then 65" 

and 40' as the standard parallels. 

We have logR = 1.8039 

log 25 = 1'3979 

1 0 g ~ / 1 8 0 =  2'2419 
- 

log cos 65" = 1.6259 

log 0.5 = 1.6990 

log cosec 5 2 i 0 =  0~1005 

log cosec I 23" = 0.6647 

log I., = 1.5338 

= 34'2 

whetlce the radius for parallel 50" is 50.9, as compared with 53.4 
for the simple conic. 

And the radius of parallel 70" is 28.6. 
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Also log 2 = 0.301 o 
log I 8 0 / 2 5 ~  = 0'3602 

- 
log sin 52+" = 1.8995 

log sin 124" = 1.3353 
- 

log n = I ,8960 

n = 0787 as compared with ,766. 
The scale along the parallel 70" is 1.034, compared with 

I -097. 
The coordinates of the point 70" N. 65" E. are 

x = I 6.6, y = 26.6, 

whence the distance and bearing from the centre of the map 
are 31'4 mm., 31" 58' ; against 32.9 mm., 32" 35' for the simple 
conic ; and 32.1 mm., 30" o' the true distance and bearing: 
a small but sensible improvement. 

It is hardly possible to give, within the scope of this book, 
tables which shall fully illustrate the numerical properties of 
a sufficient number of cases of this projection. 

Simple conical equal area (Lambert 's fifth). 

The distances between the concentric circular parallels are 
no longer true, having been modified to make the projection 
equal area. 

The radius of the standard parallel is given by 

r, = 2R tan Jx,  ........................( I). 

Equating the two expressions for the length of an element of 
the parallel we have 

Y , .  8 = R sin x,,. AX, 

whence 
8 R sin X, 

72 = - - - ............. 
AX - 2R tan bx, - c0s2 ixo. .(2). 

The general expression for the radius of any parallel is 

..................... r = 2R sec +x, sin (3 ), 
and the projection is constructed by computing the standard 
parallel from ( I )  and dividing it truly; this gives the meridians. 
The radii of the parallels are then computed by (3). 



The scale along a meridian is 

dr 
= sec &xo cos ax. .  ................... 

R ~ x  
(4)! 

by differentiating (3). 
The scale along a parallel is 

r de - 72 Y COS - - - 2 X o  ............... 
R s i n X . d X - R s i n ~  c o s 3 ~  (51, 

from ( 2 )  and (3). 

Fig. 1 5 .  Simple Conical Equal Area. 

The scale of areas is 

?,drdtl 
= unity, 

R 3 i n  X .  dxdX 

from (4) and ( 5 ) .  
Hence the projection is an equal area projection. 
As an example we will compute the projection for the map 

of Europe, as we have already done for the preceding projections. 
The standard parallel is 50" N. ; hence X, = 40" ; and 

r,, = 2R tan i ~ ,  = 46.3 mm., 
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The radius of parallel 70" is 

2R sec +x0 sin 4~ = 23'5- 

The scale along the meridian is sec +x0 cos +x, whose value is 
1.048 in lat. 70" and 0,944 in lat. 35'. 

The scale along the parallel is the reciprocal of the scale 
along the meridian, since the projection is equal area ; that is, 
0'954 and 1.059 respectively. 

Computing, as before, the rectangular coordinates of the 
point 70" N. 65" E. with respect to the centre of the map we 
have 

x = Y sin 39" 44' = I 5'0 mm., 

y = yo - r cos 39" 44' = 28.2 mm., 

whence the distance is 31 .9  mm. and the azimuth 28" 1', as 
compared with the true values 32'1 mm., 30" 0'. 

Conical equal area with two  standard parallels (Albers'). 

If r,,  r, are the radii of two standard parallels, that is, two 
parallels which are represented of their true length, we must 
evidently have 

Y, = KR cos 4, ........................ 
Y, = RR cos 4, (1) 

and the constant k is to be determined. 
Whatever form may be given to k, the constant of the cone ~z 

is the reciprocal of K. 
For equating, as usual, the two expressions for the length 

of an element of parallel, we have 

Y, . 8 = R cos +, . Ah, 

whence 
e I 

H Z - -  ........................... 
a h - 2  (2). 

I t  was shown by Albers that if the general expression for 
the radius of any parallel is 

P = 2Rak (sin 4, - sin 4 )  + r,2 ............... (3)  

and 

then the projection is equal-area. 
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To construct the projection we must first decide upon the 
parallels which we shall choose as standard ; then from their 
latitudes compute K ,  and thence Y, or r,. Draw one of the 
standard parallels, divide it truly, and obtain the meridians as 
usual. The radii of other parallels may be computed from the 
equation (3), or from the corresponding equation 

Y* = z2R2k (sin +, - sin +) + r,2 .............. . ( 5 ) .  

But the computation is simplified if we combine (3) and ( 5 )  
and obtain, after some reduction, 

Fig. 16. Conical Eqtinl Area with two S ~ n n d a r d  Parallels (Albers'). 

The scale along a meridian is 

dr kR cos $I ..................... w=- 1' 
(7), 

which is obtained very simply when otlce Y has been computed. 
The scale along a parallel is given by 



9 2  THE SIMPLE MA THEMA I'ICS 

And by multiplying together (7) and (8) we have for the area 
scale a t  any point 

r dr dB 
R cos +d+dh = - I ,  

which shows that the projection is an equal area projection. 
But it will be noticed that the equal area property does not 

depend upon the form adopted for k. In fact we have not, up 
to the present, except in (6), made any use of the expression 
for k given in (4). We have shown that for any value of k the 
projection is equal area, in the sense that any two equal areas 
upon the Earth will be represented by two equal areas upon 
the map. I t  remains, however, to be seen whether the area 
scale corresponds to the linear scale upon which the standard 
parallels are represented. 

Consider the whole area between the two standard parallels. 
I t  is rn (r12 - Y:), which by substitution for r1 and r2 becomes 
k ~ R ~ ( c o s ~ + ~  - C O S ~ + ~ ) .  Hence the area of the map varies 
with k, while the lengths of the standard parallels are, it will 
be noticed, independent of k. I t  is therefore evident that there 
can be only one value of k which makes the area scale of the 
map correspond to the linear scale along the standard parallels ; 
and this is found by equating the above area to the corresponding 
area of the sphere, namely 27rR2 (sin +, - sin +,). 

We have then 

k (cos2 +, - cos2 +,) = 2 (sin +, - sin +,), 

which reduces to 

2 
-- - - I 

k =  
sin $1 + sin 4 2  . $1 + 4, 41 - $2 sin -- cos 

2 2 

as in (4). 
As an example we will compute, as in previous cases, the 

projection for the map of Europe. 
Taking 65" and 40" as the standard parallels, we have 

& = 2 
= 1.291 sin 65" + sin 40" 

and n =0'775, 
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log K =  O'IIO~ 
log R = I -8039 

- 
log cos 65" = 1.6259 

log Y, = 1'5407 

Yl = 34'7 
Y , ~  = I 206. 

ya = 2R2k (sin +, - sin 4) + r,S 
and if 4 = 70°, Y = 29'3, 

if 4 = 50°, Y = 51'7. 

Hence if the point 50" N. 20" E. is the centre of the map, as 
before, the rectangular coordinates of the point 70" N. 65" E. are 

x = 29.3 sin 34" 5 3' 
= 16.8, 

Y = 5 1'7 - 29'3 COS 34" 53' 

= 27'7, 
whence the distance is 32.4 mm. and the bearing 3 I"  I 5'. 

Conical orthomorphic projections. 

Consider the general properties of a conical projection de- 
fined by the equation 

........................ Y = 112 (tan *x)" ( I), 
where, as usual, x is the co-latitude and n is the constant of 
the cone. 

It  is easy to show that any conical projection of this family 
is orthomorphic, whatever the value of nz and n. For the scale 
along the meridian at any point is 

dy mn (tan 4 x)'*-' 4 sec2 4~ -- - 
R e -  K 

I t  Y = .................................. 
K sin x (2) 

And the scale along the parallel at any point is 
~ d e  - 121' .................. &? sin x . dh - R sin x (3), 

the same as the scale along the meridian. 
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Also, since the projection is conical, the meridians and 
parallels cut at  right angles. This, combined with the pro- 
perty we have just proved, that at  any point the scale along 
the meridians and parallels is the same, shows that the family 
of projections defined by (1 )  are all orthomorphic, whatever the 
values of nz and n. 

We have still these constants at our disposal. The constant 
912 is evidently a simple scale constant. If we want to make the 

Fig. I 7.  Conical Orthornorphic. 

parallel of co-latitude X, the standard parallel, of true length, 
we must have 

27rn . 9lz (tan 3 ~ ~ ) "  = 27rX sin X ,  . . . . . . . . . . . . . . . (4)~  

whence 
X sin X,  

?I2 = - -- .... ......... ... ........ . . . ( 5 ) ,  
n (tan 4 x,)" 

and our scale constant cannot be determined numerically, 
though we have selected our standard parallel, until we have 
selected further the value which we shall give to n, the con- 
stant of the cone. 

But suppose, for the moment, that we have decided to give 
to n the same value that it has i n  the simple conical projection, 



namely cos x,. We shall then find the corresponding value of 
nz from ( 5 ) ,  and we shall have an orthomorphic projection which 
we may consider as constructed upon the tangent cone a t  the 
selected standard parallel. 

Now the scale at any point not on this standard parallel is 
too large. 

If then we consider any scale value, larger than the true, 
we shall be able to find a pair of parallels, one on each side 
of the standard, possessing this scale value. And it is evident 
that by suitably diminishing the value of the constant IIZ we 
could reduce this pair of parallels to their true length; which 
would make the parallels between them too small in scale, 
while leaving the parallels outside too large. But if we start 
in this way, it will be a very tedious business to find, by 
trial and error, which pair of parallels it is that is made true 
by a given reduction in scale value; while i f  we start in the 
reverse way, by selecting a pair of parallels which we wish 
to make standard, it is evident that we cannot restrict our 
value of 72 to satisfy an independent condition as above ; the 
two conditions will generally be irreconcilable. There is only 
one value of n which will make a given pair of parallels their 
true length, or standard. So having selected our parallels 
ure proceed to determine the corresponding value of n, as 
follows. 

The condition that the parallels whose co-latitudes are 
xl, xz should bear their true ratio to one another is evidently, 
from (4), 

(tan 3 ~ ~ ) ~  sin x, 
-- - - -- 
(tan 3 ~ ~ ) ' '  sin x2 ' 

Taking logarithms of both sides, we have 

log sin X ,  - log sin X, 
n =  - -  - - - -  - - -  ............... 

log tali &x, - log tan tX, (6). 

This gives us the value of n, the cotlstant of the cone, which 
lnaltes the scale along the two selected parallels the same. T o  
make it the true scale we  must choose 712 so that 

R sin X, 
792 = - -- - or = R sin x2 

72 (tan + x , ) ~ ~  n (tan 4 x 2  ' 
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I t  is so manifest an advantage to have two parallels their 
true length, instead of one, that it is usual to consider this 
case only of the conical orthomorphic projections. I t  is 
Lambert's Second Projection, but more generally goes by the 
name of Gauss. 

As an example we will compute, as before, the projection 
for the map of Europe. 

If we take the standard parallels 65" and 40" N., we have 

log sin 25" - log sin 50" n = ----- 
log tan I 2" 30' - log tan 2 5" 

- 
log R = 1.8039 log n = 1.go31 

- 
log sin X, = 1.6259 n log tan 4 X, = T-4766 

. -- - 
I -4298 1'3797 
- 
1'3797 

log m = 2.0501 

And log r = log m 

+ n log tan 4 ~ .  
Hence when + = 70°, 

r = 28'0 

and when + = 50°, r = 50.0. 

If, as before, we take the centre of the map at 50" N. 20" E., 
the rectangular coordinates of the point 70" N. 65" E. are 

x = I 6.5 mm., y = 27'3 mm., 

whence the distance is 3 1.9 mm. and the bearing 3 I" 4', which 
are nearer the true distance and bearing, 32-1 mm., 30°0', than 
in any of the previous examples. 

(KyiixX)l= 1.058; or The scale of areas at this point is 

the areas about this point are shown about six per cent. too 
great, as compared with ten per cent. for the simple conic, and 
three and a half per cent. for the conic with true meridians 
and two standard parallels. 
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Zenithal projections derived from the conical. 

We have already treated these projections in a descriptive 
way in Chapter IV. We must now consider them more formally, 
and will start with the zenithal equidistant projection. 

In the zenithal equidistant projection the distance and 
azimuth of any point from the centre of the map are correctly 
represented. Hence the obvious method of constructing the 
projection, for a chosen centre, is to compute the distances and 
azimuths of the points of intersection of the parallels and 
meridians. 

In the simple case when the pole is the centre no computation 
is needed. 

In the general case, let 4,) A, be the latitude and longitude 
of the chosen centre ; $, A of any other point. And let c, 0 be 
the angular distance and azimuth of this latter point from the 
centre. Then we have a t  once 

and sin 0 = cos $I cosec C sin ( 1  - A,) ............... ( 2 ) .  

It is easy to compute C directly from (I) ,  especially if a table 
of natural cosines is available. Should the computer prefer to 
adopt the process known as "preparing ( I )  for logarithmic 
computation" he will proceed as follows. 

Take two auxiliary quantities 7lz) o, such that 

sin +, = nz sin o ............... 
cos 4, cos (A - A,) = 712 cos o (3). 

Then cos = ?IZ cos ( 4  - o)  .................... .(4). 

The auxiliary angle o is obtained from the equation 

.................. tan o = tan 4, sec (A - A,) ( 5 ) )  
and 992 from either of equations (3) when o has been found. 

This gives in angle. To  convert it into linear measure 
for plotting we have 

As an example of both processes we will compute, in parallel 
columns, the distance and azimuth of the poin't 70" N. 65" E. 
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from the point 50" N. 20°'E., already required in our examples 
of the conical projection. 

- 
log sin & I .a843 - 
log sin 9 1.9730 

- 
1.8573 0'7200 

log cos #o i.808 I 
- 

log cos # 1'5341 
- 

log cos ( A  - Xo) I '8495 
- 
1'1917 0.1555 

log tan $0 0.0762 
log sec (A - Xo) 0.1 505 

log tan w 0~2267 w = 59O 19' 

log sin $0 i-8843 
log cosec w 0.0655 

- 
log m I '9498 
log cos (@ - W )  i'g924 

1 logcos { - 
cos { 0.8755 1'9422 { = 28O 55' 

- 
r 2g0 54' 

log cos #I 1'5341 
log cosec { 0.3158 
log sin ( A  - &,) is8495 

- 
log sin 8 1 -6994 

e 300 2' 

and the computatioil of e is identical 
with that in the other column. 

There is very little to  choose between the two methods. The 
second is perhaps somewhat more accurate when logarithm 
tables of a minimum number of places are used. 

Finally log 4'" = 1'4612 

log R = 1.8039 

log .rr/180 = 2'2419 

log r = 1.5070 
r = 32-1 mm. for the scale of I : I oo,ooo,ooo. 

T o  construct zenithal projections with facility we require 
extensive tables computed from the above formulae for different 
values of +,, such as are given by  Hammer (Diegeogra$hisc~u~~ 
wichtigsten Kartenfrq'ektionen, Stuttgart 1889). Abbreviated 
tables of this kind are given on pp. I 10, I I I ,  sufficient to  enable 
us t o  compute the examples which we require. 

I n  the conical projections the alterations of scale were 
symmetrical about the meridian and the parallel of latitude. 
Hence we examined the scale along the meridian and the scale 
along the parallel of latitude to  obtain an estimate of the 
distortion a t  any point of the map. 

I n  the zenithal projections, on the other hand, the alterations 
of scale are symmetrical about the radial from the centre and 
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the parallel of given distance from that centre. Hence we shall 
examine the errors of scale along the radial and along the 
parallel small circle instead of along the meridian and the 
parallel of latitude. 

It is evident that the scale along the radial is the value of 
d7- 

the expression - - and the scale along the parallel is 
RdC' 

rd8 Y 

R sin C. d8 or -- R sin c '  
since in all zenithal projections the azimuths are true. 

We will examine first the zenithal projections derived from 
the conical (see Chapter rv). 

Zenithal equidistant projection. 

Y =  RC. 

Hence the scale along the radial is unity, that is to say, 
distances from the centre are represented truly, as is implied 
in the name of the projection. And the scale along the parallel 

C circle is - C.lr or if C is expressed in degrees, 
sin c ' sin 4'. 180' 

The area scale is the same as the scale along the parallel. 

Zenithal equal area projection. 

This is a particular case of the conical equal area with one 
standard parallel, c,, = o, whence 

Y =  2R sin ic. 
The scale along the radial is 

dl. 
--- = cos *c. 
RdC 

The scale along the parallel is 

Y 

E K ' C  = sec &C, 

the reciprocal of the scale along the radial, which proves the 
equal area property. 
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Zenithal orthomorphic (Stereographic) projection. 

This is a particular case of the conical orthomorphic, with 
one standard parallel = 0. We saw on p. 35 that its formula 
is r = 2R tan 4c. 

The scale along the radial is 

The scale along the parallel is 

Y 

R sin 5 = sec2 45; 

or the same as the scale along the radial, which proves that the 
projection is orthomorphic. 

The area scale is sec4 
T o  continue the example already computed for the conical 

projections and the zenithal equal area, we have found that the 
true distance and azimuth of the point 70" N. 65" E. from the 
centre 50' N. 20" E. are given by 

In the zenithal equal area projection 

In the zenithal orthomorphic 

Y = 2R tan 3 (28' 5 5 ' )  = 32.8. 

The area scales are respectively b , unity, and sec4 45, 
sin C. 180 

Let us now bring together the cases of this example that 
we have computed. We have a map of Europe with centre 
50' N. 20" E., and have examined how well the different pro- 
jections are able to represent the distance and azimuth of the 
point 70" N. 65' E. from the centre ; and the area about that 
point. The following are the results. 
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Simple conic 
Conic with two standard 

parallels 
Simple conical equal area 
Albers' conical equal area 
Conical orthomorphic 
Zenithal equidistant 
Zenithal equal area 
Zenithal orthomorphic 

Error in dist. 
per cent. Error in azimuth 

24 2 1 O  

Error in area scale 
per cent. 

I 0  

In the next chapter we shall compute more extensive tables 
upon this plan. 

Bonne's projection. 

We have already described the modification of the simple 
conical projection known as Bonne's, or the Projection du Ddpdt 
de la Guerre. The modification consists in dividing eve1.y 

parallel truly, instead of only the standard parallel. The 
meridians are then formed by drawing smooth curves through 
the points of division of the parallels. 

It is easy to show that the projection is equal area. For 
consider a small element of area enclosed between two neighbour- 
ing parallels, and two neighbouring meridians. On the sphere 

Fig. 18. 

the small element of area will be a rectangle; on the projection 
it will be a parallelogram upon the same base and between 
the same parallels, and consequently equal in area to the 
rectangle. 

The radii of the parallels are computed as for the simple 
conical projection. Rut it is clear that there is no quantity n, 
the constant of the cone, precisely analogous to the constant in 
the conical projection. 
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We may, however, look upon n, not as constant, but as 
varying with the latitude, so that the angle at the centre of the 
circular parallel subtended by an extent of longitude Ah is 
? c .  Ah ; and then, by analogy with the conical projection, 

R cos + n = 
Y 

The projection may be constructed graphically, subject to the 
usual difficulty that the centre of the circular parallels is very 
generally off the sheet. But the computation of the rectangular 
coordinates is easy. 

Fig. 19. Bonne. 

Let us take as an example the projection for the map of 
Europe already computed for the simple conic. 

The standard parallel 50" N. has radius 53-4 mm. 
The parallel 70" N. has radius 3 I '2 mm. ; and for this parallel 

72, as defined above, = R cos #/Y = 0.698. 
Hence the coordinates of the point 70" N. 65" E. with respect 

to the centre 50" N. 20" E. are 

x = 31.2 sin (0.698 x 45") = 16.3 mm., 

y = 53'4 - 31'2 cos 31"25'= 26.8 mm., 
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whence the distance from the centre is 31.4 min. and the bearing 
31' IS', which are nearer the true distance and bearing than in 
the simple conic ; or in the conic with two standard parallels ; 
better than in Albers' ; worse in distance but better in bearing 
than the simple conical equal area ; and not so good as the 
conical orthomorphic. 

These conclusions apply of course only to this particular 
case. They are not general. For a inore general discussion of 
the comparative merits of these projections for a map of Europe 
see page 107. 

Mercator's projection. 

In our brief preliminary discussion of cylindrical projections 
(see Chap. 111) we came to the conclusion that only one- 
Mercator's, or the cylindrical orthomorphic-required a detailed 
examination. 

For the general case of the conical orthomorphic with one 
standard parallel +, we have 

r = 712 (tan &~)1'., 

and R sin X, 
112 = - 

12 (tan $ x , ) ~  ' 

If our cone becomes a cylinder tangent to the sphere along 
the equator, it is clear that nz becomes indefinitely large, as does 
also r ;  and that n, the constant of the cone, is zero. Rut in that 

K sin goo case mn = - - R, and is finite. 
(tan 45 0)0 

Remembering that x = elopex we may write 
y = 77ze10~e(tan 4~)" 

= m 11 + 91 log, (tan hX)} + terms involving ?ta, etc. 

Hence r - m = mn log, (tan ax), since the terms in na vanish ; 
and Yo - ?IZ = 0. 

.'. Y,, - Y = - uzft log, (tan 3 ~ )  
K 

= + log,, tan (45'+ 44). 
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which is the expression we require for the distance of any 
parallel from the equator. 

Hence we have, in rectangular coordinates, 

where Ah is the difference of longitude from the central meridian 
expressed in  degrees, 

The scale along a parallel is 

dx 
Kcos - A  = sec +. 

The scale along a meridian is 

Hence the scale at any point in any direction is sec 4, and the 
projection is orthomorphic, which is of course obvious, because 
it is a special case of the conical orthomorphic projection. 

As an example, let us take the map of Europe already 
computed for the conical projections. 

When + = 50" 

y = 2.30259 x 63.66 log,, tan 70" 

= 64-3 mm., 

and when 4 = 70" 

y = I 10.5 mm. 
If Ax = 45" 

RIT 
X =  - = 49'9 mm. 

4 

Hence the distance of the point 70" N. 65" E. from the point 
50" N. 20" E. is 68.0 mm., or more than double the true distance; 
while the bearing is 47" I 2' instead of 30" 0'. 

The last result shows how far from preserving the true 
bearings may be a projection which is formally orthomorphic. 
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T H E  ERRORS OF PROJECTlONS 

THE usual method of studying the errors of a projection 
is to imagine a small circle described upon the Earth, and to 
consider the shape which it assumes in the projection. The 
axes of the ellipse into which the infinitesimal circle is deformed 
may serve as a measure of the greatest and least changes of scale 
value round about the point; and a simple formula determines 
the maximum deformation of angle that can take place in the 
neighbourhood. 

It seems, however, to the writer that these quantities are not 
really of very much value in representing the real value of the 
projection for the representation of areas of finite size; and no 
use has been made of them in this book. We propose instead 
to calculate some tables of the errors of distances, bearings, and 
areas for selected projections covering large areas, in the manner 
which has been illustrated already. 

Let us consider first the differences between the principal 
members of the group of conical projections, as constructed for 
the map of Europe. The formulae for these projections are verj. 
various in appearance; it is instructive to see how comparatively 
little they differ numerically. 

Our first table is constructed for the graticules of small maps 
on the scale of one in a hundred million. We calculate the 
values of 71, the constant of the cone, and the radii for the three 
parallels of latitude 30°, 50°, and 70'. And we notice that while 
their absolute radii and the inclinations of the meridians vary 
considerably, the distances between the parallels remain very 
nearly the same. 
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Conical Projections. Radii of Parallels for Scale I / I oe. 

Ott this Scale Rad. of Earth =63.66 nrnz. loO= I 1.1 I ?pint. 

Projection Standard Radii of Parallels 
Parallel n 30" Diff. so0 Diff. 70" 

Simple Conic ... so0 0.766 75.6 22.2 53'4 22.2 31'2 
Conic 2 St. Par. ... [400 650 0.78; 73.1 22.2 50.9 22.2 28.7 

... Con. Equal Area so0 0.883 67.8 21'5 46.3 22.8 23'5 
Al bers' ... 650 0.775 73.9 22.2 51.7 22.4 ... {40° =9.3 

... Con. Orthomorphic 1650 0.800 72.3 22.3 j0.O 22.0 1 400 
28.0 

Next, we will compute tables of the errors in distance and 
bearing from the centre, and of the area representation at the 
point, for three continental maps, of Europe, Asia, and Africa 
respectively. 

Errors of Projctions. Map of Eurofe. Centre 50" N. 20' E. 
Corner 70° N. 65O E. Corner 30° N. 50" E. 

Errors of 
Dist. from Az. from Dist. from Az. from Area 

Centre Centre *lea Centre Centre 
"lo 0 "lo "10 "lo 

Simple Conic ... + 2 + 2.6 + 10 + I  + 8.5 + 5 
Con. 2 St. Par.' ... - 2  + 2.0 + 3 o - 1.5 + 4 
Con. Eq. Area ... - I - 2.0 o o - 5'0 o 
Albers' " ... ... + I  + 1'3 o o - 1.2 o 
Con. Orthomorph. ... - I + 1.1 + 6 + I  - 1-5 + 10 
Zen. Equidist. ... o 0.0 + 4 o 0.0 + 5 
Zen. Eq. Area ... - r 0.0 o - I 0.0 o 
Zen. Orthomorph. ... + 2 0.0 - 10 + 2  0-0 +I5  
Bonne ... ... - 2 + 1-2 o - 2 + 0.5 o 

" Standard parallels. 65' N. and 40° N. 

Errors of Prqktions. Map of Asia. Centre 40" N. go0 E. 
Corner 70' N. lgoO E. 

Errors of 
Dist. from Az. from Area 

Centre Centre 
"lo 

0 "lo 
Simple Conic ... + I I + 9.8 + 26 
Con.zSt .  Par." + 3 + 12'4 +I4  
Con. E Area 9;. o - 0.6 o 
Albers' ... + 6 + 13'2 o 
Con. Orthomorph. o + 10.2 + 24 
Zen. Equidist. ... o 0.0 + 18 
Zen. Eq. Area ... - 4 0.0 o 
Zen. Orthomorph. + r I 0.0 
Bonne ... ... - 5 + 10.0 

+ 65 
0 

Corner 20° S. 15oO E. 

Dist. from 
Centre 

"lo 
+ 5 
- 3 
- 3 
- I 

- 3 
0 

- 8 
- 8 
- I 2  

Az. from 
Centre 

0 

- 12.9 
- 3'7 
- 24. I 
- 0.6 
- 7'2 

0'0 
0'0 
0'0 

+ 6.5 

Area 

"10 
+ 53 
+ 27 

0 
0 

+ 76 
+ 45 

0 

+ 208 
0 

" Standard parallels. 63O N. and 2' N. 



THE ERRORS OF PROJECTIONS 

Errors of Prq>ctio~zs. lMnp of Africa. Centre oO, 20" E. 

Corner 3s0N.  75"E. 
Errors of 

Dist. from Centre Az. from Centre Area 
"lo 0 "lo 

Simple Cylindrical ... ... + 5 + 8.6 + 22 
Cyl. Equal Area ... ... + 3 + 9'7 o 
Zen. Equidistant ... ... o 0.0 + 22 
Zen. Equal Area ... ... - 5 0.0 o 
Zen. Ortho~norphic ... ... + 11 0.0 

Sanson-Flamsteed ... ... - 8 + 2'7 o 
+ a 5  

Clarke's Perspective ... ... + 2 0.0 + 32 

These are instructive as showing how rapidly the errors 
increase as one passes a radius of about 40°, and also how great 
a sacrifice of other desirable properties is entailed by the 
adoption of orthomorphic projections. 

It  will be understood that these tables refer to distances and 
bearings measured from the centre in each case ; and that while 
for the conical projections the same figures are true all along the 
parallel, this is not so for the zenithal projections. We must be 
careful, therefore, not to overvalue the zenithal projections be- 
cause they make such a favourable showing when we consider 
them in relation to their centres. 

The method of computatiorl of these tables is as follows : 
The rectangular coordinates of the corners, referred to axes 
through the centre, are calculated, and from these the bearings 
and azimuths are deduced. With the conical projections it is 
easy to calculate the true bearing of any ray from any point, 
referred to the meridian through that point-easy because the 
meridians are straight lines. On other projections the meridians 
are not always straight, and it is troublesome to calculate the 
direction of the meridian at a point. 

The distances and azimuths calculated for the projection 
under consideration are compared with the true distance and 
azimuth calculated from the spherical triangle, or taken from 
the tables of distance and azimuth, of which an example is 
given among the specimen tables at the end of the book. 
References are given there to more extensive collections of 
tables. 
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In comparing two projections it is often useful to place 
a tracing of one over the other. Thus if one has a tracing of 
the zenithal equidistant projection with centre at a given 
latitude, it is easy to find graphically the errors in distance 
and azimuth of any other projection for centres of that latitude. 

In Figs. I 3-17 and 19 we have given diagrams of the five 
conical projections and of Honne, for the map of Europe; 
together with the numerical errors as shown in the above table. 
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TABLES 

WE cannot attempt to give here an extended set of tables 
such as are required in the drawing office of a Survey Depart- 
ment or a Cartographer. I t  must suffice to give a few tables 
which will be useful to anyone who wishes to work out the 
properties of a projection. 

Table I gives distances in degrees, and azimuths, from 
centres of each 10" of latitude from the equator to so". These 
are computed by formulae such as those on page 97, and may 
be extended as desired in the same way. They are useful in 
calculating zenithal projections. The azimuths of some of the 
principal intersections of meridian and parallels are given at 
once in the table, and are the same for all the zenithal pro- 
jections. The angular distance is taken from the table, and 
substituted in the formula which gives the corresponding radial 
distance for the projection i n  question. 

In testing the accuracy of conical projections it is best to 
proceed as we have done in the examples: to calculate the 
rectangular coordinates of the intersections ; thence calculate 
the corresponding azimuth and distance ; and compare with the 
true azimuth and distance as given in these tables. 

Should it be desired to plot a zenithal projection in rect- 
angular coordinates, these may be computed very readily from 
the azimuths A and the radial distances R ,  since 

x = R s i n  A and y = R c o s A .  
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TABLE I. 

Distances and Azimuths from the Centre, of the 
Intersections of Meridians and Parallels. 

Centre : Latitude oO. 

Centre : Latitude + 20". 

Distances 

A t  15' 60' 

Lat. 
60" 30' 
61 59 
64 20 

67 29 
71 15 
7 5 3 1  
80 9 

Centre : Latitude + 30'. 

Azimuths 

b 

A L  

Lnt. 
-20' 
- 1 0  

o 
+ I 0  
+ 2 0  

+ 30 
+40 
+50 
+60 
+70 

15O 

55" 44' 
35 25 
24 9 
I7 9 
1 2  15 
8 3 0  
5 23 

AL 

Lnt. 
- 20° 
- 10  

o 
+ J o  
+20 
+33  
+40 
+ S O  
+60 
+70 
, 

45O 

76' of 
62 46 
50 46 
40 7 
3 0 4 1  
2 2 1 2  
14 26 

30° 

70° 34' 
53 57 
40 54 
3 0 4 7  
22 46 
16 6 
10 19 

Distances 

I 
15" i 30° 1 4s1 

60' 

78' 30' 
67 12 

56 I9 
45 54 
36 o 
2 6 3 4  
I7 30 

Azimuths 

-- 

42'36' 
33 2 6 ,  
24 49 
17 35 
14 5 
16 51 
2 3 4 6  
32 17 
4 1 2 4  
5 0 4 9  

Distances 

60° 

120~40 '  
111 15 
101 10 
90 21 

78 50 
66 47 
5 4 3 0  
42 23 
3 0 4 4  
1 9 4 6  

158~57 '  
152 27 
141 55 
122 28 
87 25 
50 39 
2 9 2 8  
18 9 
1 1 1 7  
6 3 3  

49O37' 
42 5 
35 32 
30 35 
28 9 
28 51 
3 2 3 1  
38 16 
4 5 1 9  
53 9 

590301 
53 29 
48 21 

44 27 

l S O  

5z0 3' 
42 31 
33 14 
24 24 
1 6 5 1  
12 59 
1 5 4 8  
2 2  58 
31 39 
40 53 

Azimuths 

42 9 
41 43 
43 12 
46 26 

1 4 1 ~ 5 5 ~  
132 44 
120 38 
104 37 
84 46 
63 46 
4 5 2 6  
31 15 
2 0 3 5  
1 2 2 0  

56 3 
54 42 
5 4 3 4  
55 40 

30' i 4 9  1 60° 

16z0 2' 

157 51 
151 49 
141 55 
122 56 
86 14 
4 6 4 3  
25 14 
14 17 
7 4 6 ,  

129~33'  
119 57 
108 53 
96 g 
81 56 
66 58 
52 17 
38 50 
27 2 
1 6 4 9  

51 4 5 7 5 5  
5 6 4 3 1 6 1  19 

133~24 '  
125 36 
116 34 
105 50 
93 6 
78 18 
6 2 1 1  
46 11 

3r 40 
19 14 

57. 44' 1 66" 9' 
49 19 58 55 
41 25 52 14 
34 22 1 4 6  22 
28 52 41 43 
25 54 1 38 43 
2 6 2 2 , 3 7 4 6  

-- .- 
146~15 '  
139 31 
130 54 
119 17 
103 15 
82 22 

5 9 3 4  
39 51 
25 7 
14 24 

- - -- 

123' 8' 
114 56 
106 6 
96 2 j  
85 42 
73 54 
61 lo 
47 55 
3 4 4 3  
22 8 - 

- -  - 

76"21' 
70 9 
64 2 0  

59 7 
5 4 4 2  
51 19 
4 9 1 3  

30 6 / 39 3 48 36 
36 6 42 2 0 1  4 9 3 0  
43 25 1 47 13 1 51 50 
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Centre : Latitude + 40". 

Centre : Latitude + so0. 

Distances Azimuths 

A L  
--- - -. . 

+ 50 + 60 

AL 

Lat. 
-lo0 

o 
+ro 
+20 

+30 
+40 
+So 
+60 
+7O 

I 
+SO 

Table I1 gives the lengths of degrees of the meridian and of 
the parallels at  every roo of latitude, in miles and in kilometres. 

It  will be seen that owing to the ellipticity of the Earth 
a degree of latitude at the Pole is nearly one per cent. longer 
than a degree at the Equator. And a degree of longitude at 
the Equator is about two-thirds per cent. longer than a degree 
of latitude. 

This variation in the length of a degree and of a minute of 
arc is the source of the confi~sion which exists in the use of the 
sea or geographical mile as a unit. 

Azimuths Distances 

60" 

117~47' 
110 21 
102 8 
92 49 
82 3 
6938 
55 40 
40 44 
25 54 
12 9 

I 

;;" 161O 6' 
157 22 
151 57 
142 53 
124 36 
85 9 
41 33 

9 53 
3 58 

60° 

74O36' 
67 2Y 
60 44 
54 34 
49 13 
45 2 
42 23 
41 34 
42 41 , 45 36 

-- 3 0 ° 1  4s0 

144~ 8' 129~48' 
138 4 122 44 
130 8 114 18 
119 3 103 57 
102 53 90 59 
80 13 75 5 
54 31 57 2 
32 59 39 1 

17 54 23 I 1  

7 31 1 10 18 
I 

I 5O 

5i054' 
42 16 
32 49 
23 46 
15 48 
1 1  28 
14 31 
22 5 
31 0 

40 24 
I 

30° , 45O 
57O12' 65" 3' 
48 26 57 12 

40 5 49 50 
32 31 43 12 
26 22 37 46 
2 2 5 2  34 5 
23 14 32 48 
27 20 34 9 
33 48 37 53 , 41 34 43 21 
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T A B L E  11. 

Lengths of Degrees of the  Meridian and Parallel. 

Note:  The lengths of I O  on the meridian are for arcs extending half a degree 
north and south of the latitude named. 

Lat. 

oO 
10 

2 0  

30 
40 
50 
60 
70 
80 
9O 

Table I11 gives the lengths of circular arcs in terms of the 
radius, or the circular measure of the arcs. I t  is useful in 
transforming from the angular distances of Table I t o  distances 
in some unit of length, for plotting the projection. 

Thus, if the spherical distance of an intersection from the 
centre of the map is 17" 58', = 17"-97, we have 

whence I 7'.97 = -3  I 36 R, where R is the radius of the Earth. 

T A B L E  111. 

Lengths of Circular Arcs, in terms of the Radius. 

of Meridian 

nliles I Km. 

1' of Parallel 

68.70 
68.73 
68-79 
68.88 
68-99 
69.12 
69.23 
69.32 
69-39 
69.41 

Miles 

69.17 
68.13 
65'03 
59'96 
53-06 
44'55 
34'67 
23'73 
12-05 
0'00 

- 

I I O . ~ ~  
I 10.60 
110.70 
I 10.85 
I I 1.03 
111.23 
I 11.41 
11 1-57 
I I 1.66 
I I 1'70 

Dcg. 
- 

Km. 

111.32 
109.64 
104.65 
96.49 
85-40 
71'70 
55-80 
38-19 
19-39 
0'00 

Arc Ueg. I Arc 
- - - -. - - - 

10" 
20 

0.1745 1" 

0.3491 2 
30 I 0.5236 3 '01.24 

0.698 I 4 -0698 
0.8727 5 1 .0873 

6 0 1  1.0472 6 '1047 
70  1 1'2217 7 1 '1222 

80 I 1.3963 
8 1 -1396 

go 1.5708 9 , '1571 - 
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Table IV gives the radii of curvature of the meridian, and at 
right angles to the meridian, for each 10" of latitude. 

In computing a small atlas projection it is usually sufficient 
to take the Earth as spherical, but it may not be quite precise 
enough to consider it a sphere with radius equal to the radius of 
the equator. We should rather consider that in the region for 
which we are constructing the projection it inay be taken as 
a sphere whose radius is the mean of the radii in the meridian 
and at right angles to it. Thus, for a map whose centre is in 
latitude 50" we should take as the radius 6381 km., the mean of 
the quantities given in Table IV. 

T A B L E  IV. 

Radii of Curvature of the Meridian, and at right 
angles to the Meridian. 

Assumed figure a = 6377'4 km. 
/I= 6356.1 k m .  

r 1 hleridian I Perpenllic. 

Table V is extracted from the ResoZ~itions of the Inter- 
rzntio?znl Mnf Conz?~itlcc, London, 1909. It suffices for the 
construction of any one of the sheets of the International Map 
on the scale of ~/r,ooo,ooo. The principles of this slightly 
modified polyconic PI-ojection have been described in Chap. VI, 

page 5G. 
Each shcet covers 4" i n  latitude and 6" in longitude. 
Thc length of the central meridian is given in Table A. 

This is drawn do~vn the centre of the sheet. Straight lines at 
right angles to it are drawn top and bottom. Along these the 
appropriate x coordinates from Table R are laid off, and the 

I< 111. 

6377 
6378 
6380 
6383 
6386 
6390 
6393 
6396 
6398 
6399 

-, 

o0 
I 0  
20  

30 
40 
50 
60 
70 
80 
90 

I< 111 . 
6335 
6337 
6312 
635 I 
6361 
6372 
6383 
6391 
6397 
6399 



TABLES 

small y coordinates are erected as perpendiculars. Through 
the points thus constructed the top and bottom parallels of 
the sheet are drawn as circular arcs. The points are then 
joined in pairs to make the side meridians ; and the inter- 
mediate parallels are drawn as circular arcs dividing the 
meridians equally. 

The small extent of the Tables requisite for so large an 
enterprise is evidence of the practical convenience of the 
polyconic projection for sheets of this size. 

TABLE V (A A N D  B). 

TABLES FOR T H E  PROJECTION OF T H E  SHEETS OF THE 

INTERNATIONAL MAP OF T H E  WORLD.  

On the scale of I : ~,ooo,ooo. 

(Assumed figure : a = 6378'24 km. 

b = 6356'56 km.) 

TABLE V. A. 

Corrected lengths on the Central Meridian in 
Millimetres. 

r 

Latitude 

From oO to 4O 

Natural length 
-- 

442'27 
4 8 1 442'3' 

Correction 
- - 

- 0.27 

Corrected length 
-- - 

442.00 
'2 7 442.04 

442'14 
442.28 
442'45 
442.67 
442'91 
443' 19 
443'50 
443'8 1 
44-14 
444'47 
444'81 
445'13 

I2 I 442'40 
'26 

12 16 442'53 1 '25 

1 445'44 
i 

16 20 

20 24 
24 28 

442'69 '24 
'23 

443'I3 '22 

28 32 443.39 1 .ZO 
32 36 
36 40 443'98 '17 
40 1 4 1  444'29 
44 48 
48 52 444'92 'I I 
52 56 ' 445'22 
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TABLE V. B. 

Coordinates of the intersections of the Parallels of 
Latitude and Meridians, in Millimetres. 

Longitude 

Lat. / Coordr. 

from Central Meridian 

o0 

4 

8 

12 

r 6 

20 

24 

28 

32 

36 

40 

44 

48 

52 

2 O  

222'64 
0'00 

222- 10 
0-27 

220'49 
0'54 

217.81 
0'79 

214.08 
I '03 

209.3 I 
1-25 

203'52 
1-45 

196'75 
1.61 

I 89.0 I 
1-75 

I 80.36 
r.85 

170.82 
1-92 

160.45 
1 *95 

149.29 
1 '94 

137'40 
I -89 

124.83 

333'96 
0'00 

333'16 
0.6 r 

330'74 
1.21 

326'73 
1-78 

321.13 
2'32 

31 3'98 
2'81 

305'3I 
3-25 

295'15 
3'63 

283-56 
3'93 

270'59 
4'16 

256-29 
4-31 

240'73 
4 '38 

224.00 
4'36 

206. I 6 
4'25 

187.31 
4.06 

Mm. x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 
Y 

x 

I I 1-64 167.52 
3 -80 

111.32 
0'00 

Ir 1.05 
0.07 

110.25 
0.13 

I 08.9 r 
0.20 

107.04 
0.26 

104.65 
0-31 

101.76 
0.36 

98'37 
0.40 

94'50 
0'44 

90'17 
0.46 

85'40 
0.48 

80.21 
0'49 

74'63 
0.48 

68.69 
0'47 

62.40 

60 1 .X 

I Y 

0.45 

55'81 
0.42 
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Table VI is a small specimen of the War Office Tables for 
the Projection of Graticules for squares of I"  side on the scale 
of 1/a5o,ooo, and for squares of one-half degree side on the scale 
of I / I  25,000. These are now in use for all the sheets on these 
scales published by the Geographical Section of the General 
Staff. 

The instructions for the use of these tables begin as follows: 
For the I /250,000 one degree square series. . 

Lay down a straight line for the central meridian, and mark 
off on it a length AB equal to the sum of the four 15' lengths 
given in  column m in the section for the latitudes between which 
the sheet is situated. 

At A and B draw straight lines cAd, eBf at  right angles to 
AB, and measure off lengths Ac, Ad, Be, Bf equal to half the 
distances given in column n opposite the latitudes of A and 
B respectively. 

Check the total lengths cd, ef, and check the diagonal lengths 
cf; ed, by the value given in column q. 

The ordinates of curvature, given in the last colun~ns of the 
table, are then erected, and the curves of the parallels passed 
through them. 

This provides for the bounding meridians and parallels. 
Those within are constructed by a method which will be obvious 
to any one who has followed the process up to this point. 

It  is important to notice that the diagonal q is the diagonal 
of the construction figure, and not of the graticule ; and that the 
distances 11 which are tabulated as distances on the parallel, are 
actually laid off as abscissae at right angles to the meridian. For 
sheets not exceeding a degree square this divergence from the 
strict procedure is permissible; but it would not do for the sheets 
of the International Map ; and it is not employed in the con- 
struction of the plane table graticule which follows. 
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TABLE VI. SPECIMEN OF TABLES FOR CONSTRUCTION 
OF WAR OFFICE MAPS. 

Coordinates of Projection for Degree Squares. Scale A. ~~ 

Coordinates of Projection for Quarter Degree Squares. 
Scale &. 

Latitude 

5z0 0' 

15' 

30' 

45' 

53O 0' 

53O 0' 

15' 

30' 

45' 

54O 0' 

m 
on 

Meridian 

Inches 

4-38 1 

4'38 1 

4'381 

4'381 

17.524 

4'382 

4'382 

4'382 

4'382 

17.527 

Ordinateof 
Curvature. 

Inches 

At IS' 

0 . w  

0.009 

0 . w  

m 
on 

Latitude Meridian 

Inches 

52O 0' 
8'762 

15' 
8.762 

52" 30' . -- - 

17.524 1 

n 
on 

Parallel 

Inches 

10.816 

10.756 

I 0.695 

10.634 

10.574 

10.574 

10-512 

10.45 I 

10.389 

10-328 

n 
on 

I'arallel 

Inches 

- -. 

52O 301 

45' 

53" 0' 

9 
on 

Diagonal 

Inches 

-- 

20'530 

29.406 

Ordinates of 
Curvature. 

Inches 
-- 3 At 30' 

q 
on 

Diagonal 

Inches 

-. . - - 

8.762 

8.763 

-- -- 

= 7'525 

0.005 

0.005 

om05 

0.005 

10.816 

10.756 

10.695 rTA- / -- 
1 20.561 

- - 

10.695 j 
10'634 

10.574 
- -- 

1 20'499 

0.019 

0.018 

0.018 

0.018 
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Table VII  is a specimen of the Tables for the projection of 
Graticules of Maps, as given in the official Text-book of Topo- 
graphical Surveying. They differ from the foregoing in that 
they are not adapted for plotting in the drawing office, by the 
method of rectangular coordinates, but are for use in the field, 
where the drawing facilities are limited to the plane table as 
a drawing board, and the sight rule for straight edge, with 
a pair of dividers. 

The tables therefore give the sides and diagonals of the 
trapeziums which make up the graticule. The central meridian 
is drawn and divided into the lengths m. And the corners of 
the trapeziums are obtained by striking arcs from the points of 
division of this meridian, with radii equal to the sides a, and the 
diagonals q, as given in the tables. Finally, when the corners of 
the trapeziums are thus obtained, the sides are drawn as straight 
lines; and the parallels thus become series of straight lines, 
a polygonal representation of the arcs of the circles they should 
be, but a substitute amply good enough for the field work in 
question. 

TABLE VII. 

SPECIMEN OF TABLES FOR PLANE TABLE GRATICULES. 

Graticules of Maps. Sides and Diagonals of Squares of 
a quarter of a degree of Lat. and Long. on the scale of 
I inch to 2 miles. 

Length in Inches 
- - - - - - - - 

Latitude m n 9 

on diagonal 

- -- . . - - - - - -- - - - - - - - - -  

520 or to 520 15' 8.643 5'335 5.305 10.149 
52 15 52 30 643 275 133 
52 30 52 45 643 I 18 
52 45 53 0 644 103 
53 0 53 15 644 088 
53 15 53 30 645 18j 155 1 073 
53 30 53 45 124 05 7 
53 45 54 0 645 1 24 og4 042 
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TABLE V1 I (contin?red). 

Linear value in feet of one second of Arc and its 
Logarithm, measured along the Meridian. 

Linear value in feet of one second of Arc and its 
Logarithm, measured along Parallels of Latitude. 

Latitude 

52" 0' 

5 

I 0  

15 

20 

25 

Table VIII  gives the radii in the principal zenithal projec- 
tions for each 10" of true distance from the centre. A study of 
this table shows within what limits the different projections are 
fairly the same, and where they begin to differ widely one from 
another. If the figures here given be plotted on squared paper 
it is easy to dcrive intermediate values, and in this way it is 
simple to transform from one zenithal projection to another. 
For example, Table I gives the radii and azimuths for the 
zcnithal equidistant projection. If we wish to construct the 
zenithal equal area we may take from such a diagram the radii 

Length 
feet 

101-4056 

407 I 

4085 

4100 

4115 

4129 

Logarithm Diff. 

2-0060620 
I 

+63 
683 

63 
746 

62 
808 

63 
87 1 

62 
933 

Diff. 

- I 163 

I 164 

I 166 

I 167 

I 168 

I 169 

Imgarithm 

1'796527 I 

57195 

49095 

40970 

3282 I 

24647 

Latitude 
- 

52O 0' 

5 

10 

15 

20 

25 

\ 

Diff. 

- 8076 

8100 

8125 

8149 

8174 

8200 

Length in 
feet 

.. 

62'5932 

4769 

3605 

2439 

12 72 

0104 
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of the latter which correspond to the already known radii of the 
former; and then, since the azimuths remain the same, it is 
a simple matter to pass from the one to the other. 

TABLE VIII. 

Comparison of the radii in different Zenithal Projections. 

The radius of the sphere is taken as unity. 

Table I X  gives the distances between the parallels 01.1 

Mercator's projection, expressed in degrees of the equator. 
It  will be noticed that the effect of the ellipticity of the Earth, 
in making a degree of longitude greater than a degree of 
latitude at the equator, at first more than balances the exagge- 
ration in latitude which begins in this projection as soon as the 
equator is left. 

TABLE IX. 

; E(lui- I 
I 

I distant area 
- -- -- - -- - - 

I 

10" 0.175 1 0.174 

Distance between the parallels on Mercator's Projection, 
taking into account the ellipticity of the Earth. 

2 o 
30 
40 
j O  

(The distances are expressed in degrees of the equator.) 

Ortho- 
morphic 

-- - 

0.175 
0'353 0'349 j 0.347 

0.524 1 0.518 
0.698 0'684 
0.873 0.845 

Breering 

0'175 
o.;so 

Gnoo-,onic Ortho- 
graphic 

60 1 1.047 1,000 

1 E 1'396 , r -2116 
go I'j71 1'414 

I 

-- 

0. I 76 
0'364 
0'577 
0.839 
1'192 
1'732 
2'747 
5'67 1 
00 

0.174 
0'342 
0.500 
0.643 
0.766 
0.866 
0.940 
0.985 
1'000 

0.536 1 0.527 
0.728 0.706 
0.933 1 0.888 
1'155 
I a 4 0 0  
I a678 
2'000 

1 -07 5 
1.267 
1 '469 
I '682 
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Table X gives the distances from the equator of the parallels 
for every 10" of latitude, expressed in decimals of the semi-axis- 
minor of the ellipse. I t  will be remembered (see page 60) that 
this = 2/2 x radius of the Earth on the desired scale. Thus if  
the total area of the map is to be that of a sphere whose radius 
is l/loe that of the Earth, =63.66 mm., the quantities in the 
table must be multiplied by 63.661/2 to give the values in 
millimetres. 

TABLE X. 

Mollweide's Projection. Distance of the 
parallels from the equator. 

Lat. 

1 o0 
20 

30 
40 
50 
60 
70 
80 
90 

Dist. 

0.137 
-272 
'404 
'531 
'65 I 
-762 
.862 
'945 

1'000 
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BY inadvertence no description of the Polyhedric projection 
was given in its proper place, though it is mentioned in the table 
on page 66 as in use for several series of topographical maps. 
The necessity of adding an appendix, to describe this projec- 
tion, gives the opportunity of referring to two projections now 
in use by the Egyptian Survey Department. They are treated 
in  Survey Department Paper No. I 3, The theory of Map Projkc- 
rions, with special reference to the pr@ctions used il.2 the Survey 
Depnrtmc~tt, by J. I. Craig, M.A., Cairo, 1910. The author is 
indebted to the Department for the gift of a copy of this paper. 

Polyhedric projection. 

This is of no scientific interest, except that it is much used 
in European maps. Take .on the spheroid the four points that 
are to be the corners of the sheet, and pass a plane through 
them; this will be strictly possible if the sheet is to be bounded 
by meridians and parallels. Let fall perpendiculars from each 
point of the enclosed spheroidal trapezium to this plane, and 
we have the projection. The formulae for the calculation of 
coordinates are complicated, but in practice they are scarcely 
required,' since within the limits of a single sheet not more than 
one degree square the projection is indistinguishable from the 
polyconic and from many other projections. Adjacent sheets 
fit along the edges, and the whole series of sheets representing 
a zone of latitude can be fitted together and laid out flat, but 
will not fit the adjacent zone. Thus it is not possible to combine 
a number of small sheets to make one large one, though in 
practice the difficulty would be felt only when it was a question 
of combining the original engraved plates. The deformations 
of the printed sheets would be much larger than those due to 
the projection alone. 
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The'  " Gauss  Conformal projection." 

This is the name given by Mr Craig (loc. cit.) to the projec- 
tion which has been adopted for the whole of the maps of the 
Egyptian Survey. The name is confusing, since the Conical 
orthomorphic projection, which is not the same, is very frequently 
referred to as Gauss' projection ; and the word "conformal" is 
the older equivalent of the modern word " orthomorphic." 

This " conformal" projection was devised by Gauss for the 
survey of Hanover, but it was not properly described until 
Schreiber investigated its properties very fully in 1866. The 
peculiarity which distinguishes it from other orthomorphic 
projections is that the central meridian is true. The other 
meridians and the parallels are cotnplex curves of which it is 
hard to give any geometrical account. The parallels diverge 
from one another on each side of the central meridian, and the 
scale in the north and south direction becomes wrong very 
quickly away from that meridian. Thus the projection is 
suitable only for a country such as Egypt, which is a narrow 
strip along a meridian. In this respect it resembles Cassini's 
projection, as used in the English Ordnance Survey, and it may 
perhaps be described in general terms as like a Cassini projec- 
tion in which the meridians and parallels have been slightly 
modified so that they intersect everywhere at right angles and 
make an orthomorphic projection. 

The expressions for the calculation of the rectangular co- 
ordinates are very complicated, and the whole theory quite 
unsuited for an elementary book such as this. A complete 
account of it is given by Mr Craig. 

I t  is not easy to discover that the projection has any 
advantage over several others which are far simpler and of 
general applicability. 

T h e  Mecca Retro-azimuthal projection. 

This is a very interesting example of a new class of projec- 
tion, which may be described as the inverse of the ordinary 
azimuthal or zenithal projection. In the latter the azimuth of 
any point is true at the centre of the map. In the retro- 
azimuthal projection the azimuth of the centre is true at any 
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point of the map. Thus if the map is centred on Mecca it is 
possible to find the true bearing of Mecca from any point. 
Such a map is of great interest to Mahometans in finding the 
direction of the " Qibla." 

The general properties of the class have not yet been 
investigated, and it is not possible to give rules for constructing 
a retro-azimuthal equal area or orthomorphic projection. In 
the map produced by the Egyptian Survey Department the 
meridians are drawn as straight lines at their correct equatorial 
distances apart, and the intersections with the parallels are 
found by computing the azimuths of Mecca for the intersections, 
and laying them down so that these azimuths are true upon the 
map. A small reproduction of the map is given in a pamphlet 
published by the Egyptian Survey Department, Technical 
Lecture No. 3,  1908-09 : Map Projkctio?zs, by J. I. Craig. 
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